An Improved Hierarchical and Decentralized Control Strategy for Emergency Power Supply During Disaster

Author(s):  
Junfeng Zhang ◽  
Feng Jiang ◽  
Yanjun Zhao ◽  
Min Chen ◽  
Huanhai Xin
2012 ◽  
Vol 608-609 ◽  
pp. 730-733
Author(s):  
Cheng Cheng Ye

An Emergency power supply unit is of great importance to an electric pitch control system especially in MW turbines. Based on a basic parallel-series shift circuit, the paper proposes a novel topology of an emergency power supply unit consisting of ultracapacitors in electric pitch system. Capacitance configuration is obtained and the percentage of efficiency improvement using parallel-series circuit is calculated. Then a control strategy involving three operating modes is established and specific parameters are shown with a flow chart. Finally a simulation of an emergency power supply unit is established and the result confirms the theory.


2016 ◽  
Vol 21 (4) ◽  
pp. 302-311
Author(s):  
Sang-Jin Kim ◽  
Min-Ho Kwon ◽  
Se-Wan Choi ◽  
Seok-Min Paik ◽  
Mi-Sung Kim

2020 ◽  
Vol 42 (1) ◽  
pp. 62-81
Author(s):  
Yanhuan Ren ◽  
Junqi Yu ◽  
Anjun Zhao ◽  
Wenqiang Jing ◽  
Tong Ran ◽  
...  

Improving the operational efficiency of chillers and science-based planning the cooling load distribution between the chillers and ice tank are core issues to achieve low-cost and energy-saving operations of ice storage air-conditioning systems. In view of the problems existing in centralized control architecture applied in heating, ventilation, and air conditioning, a distributed multi-objective particle swarm optimization improved by differential evolution algorithm based on a decentralized control structure was proposed. The energy consumption, operating cost, and energy loss were taken as the objectives to solve the chiller’s hourly partial load ratio and the cooling ratio of ice tank. A large-scale shopping mall in Xi’an was used as a case study. The results show that the proposed algorithm was efficient and provided significantly higher energy-savings than the traditional control strategy and particle swarm optimization algorithm, which has the advantages of good convergence, high stability, strong robustness, and high accuracy. Practical application: The end equipment of the electromechanical system is the basic component through the building operation. Based on this characteristic, taken electromechanical equipment as the computing unit, this paper proposes a distributed multi-objective optimization control strategy. In order to fully explore the economic and energy-saving effect of ice storage system, the optimization algorithm solves the chillers operation status and the load distribution. The improved optimization algorithm ensures the diversity of particles, gains fast optimization speed and higher accuracy, and also provides a better economic and energy-saving operation strategy for ice storage air-conditioning projects.


Author(s):  
Ziyu Zhang ◽  
Chunyan Wang ◽  
Wanzhong Zhao ◽  
Jian Feng

In order to solve the problems of longitudinal and lateral control coupling, low accuracy and poor real-time of existing control strategy in the process of active collision avoidance, a longitudinal and lateral collision avoidance control strategy of intelligent vehicle based on model predictive control is proposed in this paper. Firstly, the vehicle nonlinear coupling dynamics model is established. Secondly, considering the accuracy and real-time requirements of intelligent vehicle motion control in pedestrian crossing scene, and combining the advantages of centralized control and decentralized control, an integrated unidirectional decoupling compensation motion control strategy is proposed. The proposed strategy uses two pairs of unidirectional decoupling compensation controllers to realize the mutual integration and decoupling in both longitudinal and lateral directions. Compared with centralized control, it simplifies the design of controller, retains the advantages of centralized control, and improves the real-time performance of control. Compared with the decentralized control, it considers the influence of longitudinal and lateral control, retains the advantages of decentralized control, and improves the control accuracy. Finally, the proposed control strategy is simulated and analyzed in six working conditions, and compared with the existing control strategy. The results show that the proposed control strategy is obviously better than the existing control strategy in terms of control accuracy and real-time performance, and can effectively improve vehicle safety and stability.


Sign in / Sign up

Export Citation Format

Share Document