Active and Reactive Power Sharing under Time Delays in Autonomous Microgrid Using Consensus-Based Distributed Control

Author(s):  
Wang Manshang ◽  
Zheng Tianwen ◽  
Chen Laijun ◽  
Deng Sicheng ◽  
Mei Shengwei ◽  
...  
2017 ◽  
Vol 32 (3) ◽  
pp. 2427-2451 ◽  
Author(s):  
Yang Han ◽  
Hong Li ◽  
Pan Shen ◽  
Ernane Antonio Alves Coelho ◽  
Josep M. Guerrero

2020 ◽  
Vol 14 (4) ◽  
pp. 5037-5048 ◽  
Author(s):  
Mehdi Parvizimosaed ◽  
Weihua Zhuang

2021 ◽  
Vol 280 ◽  
pp. 05015
Author(s):  
Youssef Hennane ◽  
Abdelmajid Berdai ◽  
Serge Pierfederici ◽  
Farid Meibody-Tabar ◽  
Vitaliy Kuznetsov

The active and reactive power sharing of distributed generation sources (DGs) connected to isolated microgrids with a single point of common coupling (mono-PCC) to which the loads are also connected has already been the subject of several studies. A high penetration rate of DGs based on renewable energies has as a logical consequence the development and implementation of mesh and more complex multi- PCC microgrids. In this paper, a developed droop control method for synchronization and power sharing between different DGs connected to a mesh islanded multi-PCC microgrid with many distributed generation sources (DGs) and different type of loads (including active load (CPL)) randomly connected to different PCCs is applied. Then, a state model of the entire mesh microgrid is developed integrating the generators with their controllers, power lines, droop algorithms and dynamic loads. This model is then used to study the asymptotic stability and robustness properties of the system. The simulation results confirm the effectiveness of the applied strategies for the synchronization of the different DGs to the microgrid while ensuring an efficient active and reactive power sharing. also, they confirm the validity of the developed state space model of the system.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2867 ◽  
Author(s):  
Woon-Gyu Lee ◽  
Thai-Thanh Nguyen ◽  
Hyeong-Jun Yoo ◽  
Hak-Man Kim

Since the penetration of distributed energy resources (DERs) and energy storage systems (ESSs) into the microgrid (MG) system has increased significantly, the sudden disconnection of DERs and ESSs might affect the stability and reliability of the whole MG system. The low-voltage ride-through (LVRT) capability to maintain stable operation of the MG system should be considered. The main contribution of this study is to propose a distributed control, based on a dynamic consensus algorithm for LVRT operation of the MG system. The proposed control method is based on a hierarchical control that consists of primary and secondary layers. The primary layer is in charge of power regulation, while the secondary layer is responsible for the LVRT operation of the MG system. The droop controller is used in the primary layer to maintain power sharing among parallel-distributed generators in the MG system. The dynamic consensus algorithm is used in the secondary layer to control the accurate reactive power sharing and voltage restoration for LVRT operation. A comparison study on the proposed control method and centralized control method is presented in this study to show the effectiveness of the proposed controller. Different scenarios of communication failures are carried out to show the reliability of the proposed control method. The tested MG system and proposed controller are modeled in a MATLAB/Simulink environment to show the feasibility of the proposed control method.


Sign in / Sign up

Export Citation Format

Share Document