scholarly journals Review of Active and Reactive Power Sharing Strategies in Hierarchical Controlled Microgrids

2017 ◽  
Vol 32 (3) ◽  
pp. 2427-2451 ◽  
Author(s):  
Yang Han ◽  
Hong Li ◽  
Pan Shen ◽  
Ernane Antonio Alves Coelho ◽  
Josep M. Guerrero
2020 ◽  
Vol 14 (4) ◽  
pp. 5037-5048 ◽  
Author(s):  
Mehdi Parvizimosaed ◽  
Weihua Zhuang

2021 ◽  
Vol 280 ◽  
pp. 05015
Author(s):  
Youssef Hennane ◽  
Abdelmajid Berdai ◽  
Serge Pierfederici ◽  
Farid Meibody-Tabar ◽  
Vitaliy Kuznetsov

The active and reactive power sharing of distributed generation sources (DGs) connected to isolated microgrids with a single point of common coupling (mono-PCC) to which the loads are also connected has already been the subject of several studies. A high penetration rate of DGs based on renewable energies has as a logical consequence the development and implementation of mesh and more complex multi- PCC microgrids. In this paper, a developed droop control method for synchronization and power sharing between different DGs connected to a mesh islanded multi-PCC microgrid with many distributed generation sources (DGs) and different type of loads (including active load (CPL)) randomly connected to different PCCs is applied. Then, a state model of the entire mesh microgrid is developed integrating the generators with their controllers, power lines, droop algorithms and dynamic loads. This model is then used to study the asymptotic stability and robustness properties of the system. The simulation results confirm the effectiveness of the applied strategies for the synchronization of the different DGs to the microgrid while ensuring an efficient active and reactive power sharing. also, they confirm the validity of the developed state space model of the system.


2016 ◽  
Vol 19 (4) ◽  
pp. 14-34
Author(s):  
Phuong Minh Le ◽  
Duy Vo Duc Hoang ◽  
Hoa Thi Xuan Pham ◽  
Huy Minh Nguyen ◽  
Dieu Ngoc Vo

This paper proposes a new control sharing method for parallel three-phase inverters in an islanded microgrid. The proposed technique uses adaptive PIDs combined with the communication among the parallel inverters to accurately share active power and reactive power among the inverters via adjusting the desired voltage if there is a distinct difference between line impedance and the load change in the microgrid. Moreover, the paper also presents the response ability of the inverters to maintain the error within the allowed limits as the transmission line is interrupted. The proposed technique has been verified in a microgrid with three parallel distributed generation-inverter units using Matlab/Simulink. In the simulation, as the droop control using the communication information among the inverters, the sharing errors for active power and reactive power are around 0.2% and 0.6%, respectively. As the connection between the microgrid and transmission line is interrupted, the sharing errors for active power and reactive power increase to 0.4% and 2%, respectively. The simulation results have indicated that the proposed technique is superior to the traditional droop control in terms of the accuracy and stability. Therefore, the new proposed technique can be a favor alternative model for active power and reactive power sharing control of parallel inverters in an islanded microgrid.


Sign in / Sign up

Export Citation Format

Share Document