Bi-level Optimal Control Strategy of Energy Storage Participating in Power Grid Frequency Regulation Based on Multi ObjectiveGenetic Algorithm

Author(s):  
Huiqun Yu ◽  
Yongsheng Shuai ◽  
Daogang Peng ◽  
Donghui Jin
2021 ◽  
Author(s):  
Yang Zhang ◽  
Shaojia Feng ◽  
Xiaopin Yang ◽  
Wentao Xia ◽  
Tian Gao ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-11
Author(s):  
Tiezhou Wu ◽  
Yi Ding ◽  
Yushan Xu

Under the global voice of “energy saving” and the current boom in the development of energy storage technology at home and abroad, energy optimal control of the whole hybrid electric vehicle power system, as one of the core technologies of electric vehicles, is bound to become a hot target of “clean energy” vehicle development and research. This paper considers the constraints to the performance of energy storage system in Parallel Hybrid Electric Vehicle (PHEV), from which lithium-ion battery frequently charges/discharges, PHEV largely consumes energy of fuel, and their are difficulty in energy recovery and other issues in a single cycle; the research uses lithium-ion battery combined with super-capacitor (SC), which is hybrid energy storage system (Li-SC HESS), working together with internal combustion engine (ICE) to drive PHEV. Combined with PSO-PI controller and Li-SC HESS internal power limited management approach, the research proposes the PHEV energy optimal control strategy. It is based on revised Pontryagin’s minimum principle (PMP) algorithm, which establishes the PHEV vehicle simulation model through ADVISOR software and verifies the effectiveness and feasibility. Finally, the results show that the energy optimization control strategy can improve the instantaneity of tracking PHEV minimum fuel consumption track, implement energy saving, and prolong the life of lithium-ion batteries and thereby can improve hybrid energy storage system performance.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261093
Author(s):  
Wentao Huang ◽  
Jinman Yu ◽  
Zhijun Yuan ◽  
Zhongwei He ◽  
Jun He ◽  
...  

With the construction and development of ultra-high voltage (UHV) power grids, large-scale, long-distance power transmission has become common. A failure of the connecting line between the sending-end power grid and the receiving-end power grid will cause a large-scale power shortage and a frequency drop in the receiving-end power grid, which can result in the frequency collapse. Presently, under-frequency load shedding (UFLS) is adopted for solving the frequency control problem in emergency under-frequency conditions, which can easily cause large load losses. In this context, a frequency coordination optimal control strategy is proposed, which combines the mode transition of pumped storage units with UFLS to deal with emergency under-frequency problems. First, a mathematical model of the frequency dynamic response is established, which combines the mode transition of pumped storage units with UFLS based on a single-machine equivalent model. Then, an optimal model of the minimal area of the power system’s operation frequency trajectory is introduced, yielding the optimal frequency trajectory, and is used for obtaining the action frequency of the joint control strategy. A simulated annealing algorithm based on the perturbation analysis is proposed for solving the optimal model, and the optimal action frequency is obtained that satisfies the transient frequency offset safety constraint of the power system. Thus, the joint optimal control of the mode transition of the pumped storage units and UFLS is realized. Finally, the EPRI-36 bus system and China’s actual power grid are considered, for demonstrating the efficiency of the proposed strategy.


Electronics ◽  
2021 ◽  
Vol 10 (21) ◽  
pp. 2645
Author(s):  
Gaojun Meng ◽  
Yang Lu ◽  
Haitao Liu ◽  
Yuan Ye ◽  
Yukun Sun ◽  
...  

In order to efficiently use energy storage resources while meeting the power grid primary frequency modulation requirements, an adaptive droop coefficient and SOC balance-based primary frequency modulation control strategy for energy storage is proposed. Taking the SOC of energy storage battery as the control quantity, the depth of energy storage output is adaptively adjusted to prevent the saturation or exhaustion of energy storage SOC. The balanced control strategy is introduced to realize the rational utilization of resources and the fast balance of SOC in the process of primary frequency modulation of energy storage battery under different charge states. Then, four evaluation indexes are proposed to evaluate the effect of primary frequency modulation and SOC maintenance. Taking a regional power grid as an example, a simulation analysis is carried out under step load disturbance and continuous load disturbance. According to the simulation results, the proposed control strategy is effective in power system frequency regulation and battery SOC maintenance.


2021 ◽  
Author(s):  
Sajad Esmaeili ◽  
Mohammad Amini ◽  
Amir Khorsandi ◽  
Seyed Hamid Fathi ◽  
Seyed Hossein Hosseinian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document