scholarly journals An adaptive under-frequency optimal control strategy for power system combined pumped storage and under-frequency load shedding

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261093
Author(s):  
Wentao Huang ◽  
Jinman Yu ◽  
Zhijun Yuan ◽  
Zhongwei He ◽  
Jun He ◽  
...  

With the construction and development of ultra-high voltage (UHV) power grids, large-scale, long-distance power transmission has become common. A failure of the connecting line between the sending-end power grid and the receiving-end power grid will cause a large-scale power shortage and a frequency drop in the receiving-end power grid, which can result in the frequency collapse. Presently, under-frequency load shedding (UFLS) is adopted for solving the frequency control problem in emergency under-frequency conditions, which can easily cause large load losses. In this context, a frequency coordination optimal control strategy is proposed, which combines the mode transition of pumped storage units with UFLS to deal with emergency under-frequency problems. First, a mathematical model of the frequency dynamic response is established, which combines the mode transition of pumped storage units with UFLS based on a single-machine equivalent model. Then, an optimal model of the minimal area of the power system’s operation frequency trajectory is introduced, yielding the optimal frequency trajectory, and is used for obtaining the action frequency of the joint control strategy. A simulated annealing algorithm based on the perturbation analysis is proposed for solving the optimal model, and the optimal action frequency is obtained that satisfies the transient frequency offset safety constraint of the power system. Thus, the joint optimal control of the mode transition of the pumped storage units and UFLS is realized. Finally, the EPRI-36 bus system and China’s actual power grid are considered, for demonstrating the efficiency of the proposed strategy.

2021 ◽  
Author(s):  
Yang Zhang ◽  
Shaojia Feng ◽  
Xiaopin Yang ◽  
Wentao Xia ◽  
Tian Gao ◽  
...  

2014 ◽  
Vol 1008-1009 ◽  
pp. 197-201
Author(s):  
Jian Ping Liu ◽  
Chun Liu ◽  
Ting Rui Lu ◽  
Hai Yan Tang ◽  
Xin Shou Tian ◽  
...  

On the basic of deeply analyzing the characteristic of circulation economy power system with high penetration of wind power, and researching the model and transient characteristics of DFIG, the problem on transient stability of circulation economy power grid was given through simulating and analyzing the huolinhe circulation economy demonstration project on wind power consumed in the local in the paper. At last, an optimal control strategy of wind turbine based on circulation economy power system with high penetration of wind power was proposed.


2012 ◽  
Vol 38 (6) ◽  
pp. 1017 ◽  
Author(s):  
Jia-Yan ZHANG ◽  
Zhong-Hai MA ◽  
Xiao-Bin QIAN ◽  
Shao-Ming LI ◽  
Jia-Hong LANG

2012 ◽  
Vol 608-609 ◽  
pp. 1120-1126 ◽  
Author(s):  
De Shun Wang ◽  
Bo Yang ◽  
Lian Tao Ji

A static frequency converter start-up control strategy for pumped-storage power unit is presented. And rotor position detecting without position sensor is realized according to voltage and magnetism equations of ideal synchronous motor mathematics model. The mechanism and implementation method of initial rotor position determination and rotor position estimation under low frequency without position sensor are expounded and validated by simulations. Based on the mentioned control strategy, first set of a static frequency converter start-up device in China for large-scale pumped-storage unit is developed, which is applied to start-up control test in the 90 MW generator/motor of Panjiakou Pumped-storage Power Plant. Test results show that rotor position detecting, pulse commutation, natural commutation, and unit synchronous procedure control of static start-up are all proved. The outcomes have been applied in running equipment, which proves the feasibility of mentioned method.


2021 ◽  
Vol 145 ◽  
pp. 110789
Author(s):  
Parthasakha Das ◽  
Samhita Das ◽  
Pritha Das ◽  
Fathalla A. Rihan ◽  
Muhammet Uzuntarla ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document