Research on Control Strategy of Energy Storage Participating in Primary Frequency Regulation of Power Grid

2021 ◽  
Author(s):  
Y. Fan ◽  
B. Fang ◽  
W. Sun ◽  
H. Li ◽  
W. Zhou ◽  
...  
Electronics ◽  
2021 ◽  
Vol 10 (21) ◽  
pp. 2645
Author(s):  
Gaojun Meng ◽  
Yang Lu ◽  
Haitao Liu ◽  
Yuan Ye ◽  
Yukun Sun ◽  
...  

In order to efficiently use energy storage resources while meeting the power grid primary frequency modulation requirements, an adaptive droop coefficient and SOC balance-based primary frequency modulation control strategy for energy storage is proposed. Taking the SOC of energy storage battery as the control quantity, the depth of energy storage output is adaptively adjusted to prevent the saturation or exhaustion of energy storage SOC. The balanced control strategy is introduced to realize the rational utilization of resources and the fast balance of SOC in the process of primary frequency modulation of energy storage battery under different charge states. Then, four evaluation indexes are proposed to evaluate the effect of primary frequency modulation and SOC maintenance. Taking a regional power grid as an example, a simulation analysis is carried out under step load disturbance and continuous load disturbance. According to the simulation results, the proposed control strategy is effective in power system frequency regulation and battery SOC maintenance.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1704
Author(s):  
Zhongyan Xu ◽  
Shengyu Tao ◽  
Hongtao Fan ◽  
Jie Sun ◽  
Yaojie Sun

The increased installation capacity of grid-connected household photovoltaic (PV) systems has been witnessed worldwide, and the power grid is facing the challenges of overvoltage during peak power generation and limited frequency regulation performance. With the dual purpose of enhancing the power grid safety and improving the PV utilization rate, the maximum feed-in active power can be regulated by modifying the maximum power point tracking (MPPT) algorithm and battery energy storage (BES) accessibility as control instructions. However, the existing methods not only waste installed PV capacity, but it becomes no longer accessible when the state of charge (SOC) of the BES approaches its upper limit. In response to the above problem, this paper proposes a power limit control strategy to coordinate the MPPT algorithm and the BES accessibility. The proposed strategy directly controls the inverter output current according to the power limit instructions from the electric operation control centers, leading to a bus voltage difference. The difference serves as a control signal for BES and PV. Under a power-limiting scenario, priority is given to power regulation through energy storage to absorb the limited active power. When the SOC of the BES reaches the upper limit of charging, modification of the PV MPPT algorithm facilitates the inverter output power to meet the power limit requirements. To further verify the effectiveness of the proposed power limit control strategy, both simulation and experimental studies are conducted, which consistently indicated a synchronized inverter current with grid voltage and a rapid power response of the power-limiting instruction within 0.2 s. The power limit control strategy not only improves the PV energy utilization but also supports the safe and reliable operation of the power gird in the context of soaring renewable energy penetration.


Processes ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 687
Author(s):  
Chaoxiong Fang ◽  
Yuchen Tang ◽  
Rong Ye ◽  
Zhangsui Lin ◽  
Zhenshan Zhu ◽  
...  

In order to solve the capacity shortage problem in power system frequency regulation caused by large-scale integration of renewable energy, the battery energy storage-assisted frequency regulation is introduced. In this paper, an adaptive control strategy for primary frequency regulation of the energy storage system (ESS) was proposed. The control strategy combined virtual droop control, virtual inertial control, and virtual negative inertial control. The virtual inertial control was used to reduce the frequency change rate, and the virtual droop control was used to reduce the steady-state frequency deviation. The virtual droop control and the virtual inertia control were adopted in the frequency deterioration stage to slow down the frequency drop. While in the frequency recovery stage, the virtual negative inertia control worked together with the virtual droop control to accelerate the frequency recovery. Besides, the coefficients of the control methods were related to the state of charge (SOC) of ESS to avoid over-charging and over-discharging of the battery. Finally, a simulation model was built in MATLAB/SIMULINK, and case studies were conducted to verify the proposed control strategy. Results showed that the proposed method could meet the demand for frequency regulation and was beneficial to the cycle life of ESS.


Sign in / Sign up

Export Citation Format

Share Document