scholarly journals Carriers multiplication in neighboring surfactant-free silicon nanocrystals produced by 3D-surface engineering in liquid medium.

Author(s):  
Vladimir Svrcek ◽  
Davide Mariotti ◽  
Koiji Matsubara ◽  
Michio Kondo
2013 ◽  
Vol 117 (21) ◽  
pp. 10939-10948 ◽  
Author(s):  
V. Švrček ◽  
D. Mariotti ◽  
S. Mitra ◽  
T. Kaneko ◽  
L. Li ◽  
...  

2012 ◽  
Vol 40 (2) ◽  
pp. 128 ◽  
Author(s):  
Vladimir SVRCEK ◽  
Davide MARIOTTI ◽  
Koiji MATSUBARA ◽  
Michio KONDO

2018 ◽  
Vol 13 (2) ◽  
pp. 155892501801300 ◽  
Author(s):  
Narcisa Vrinceanu ◽  
Mirela Iorgoaiea Guignard ◽  
Christine Campagne ◽  
Stephane Giraud ◽  
Raluca Ioana Prepelita ◽  
...  

Surfaces of bamboo derived cellulosic fibrous systems have been modified by air-plasma treatment. Their deformational response was studied to establish the relationship between their three-dimensional profile and permanent deformation as a measure of their comfort properties since the fibrous system made of natural polymer comes into contact with the skin. The composite should have a permanent deformation close to zero, in order to be, in terms of dimensions, as stable as possible. By analyzing the area of 1 cm2 using a Universal Surface Tester (UST), different 3D surface diagrams and surface roughness values were obtained. This type of surface investigation provides relevant information about the permanent deformation response of the studied surface, for comfort purposes. The deformation responses and roughness levels were studied (the roughness being the parameter quantifying the 3D geometry of the systems surface). The effect of air-plasma surface modification on the deformation response of bamboo derived cellulosic fibrous systems and optimization of their 3D surface structure to enhance comfort-related properties proved to be substantial. The surface modifications induced by air-plasma treatment are in a good correlation with the mechanical behavior. As expected, the roughness levels of samples studied using ball sensors are higher than those of specimens scanned using a papillary sensor. Knitted polymer fibrous matrix T1 shows a roughness level of 773 μm resulting from analyses using the ball sensor, while using the papillary sensor it was 102 μm, 86.8% less than before. The analysis of the dimensional stability of knitted polymer fibrous systems was performed by scanning with the papillary sensor, since it provides information comparable with human perception concerning the architecture of the sample surfaces.


Optik ◽  
2021 ◽  
pp. 167789
Author(s):  
Muhammad Atif Makhdoom ◽  
Vito Sgobba ◽  
Iftikhar A. Channa ◽  
Nidia Ghewins

ChemInform ◽  
2016 ◽  
Vol 47 (13) ◽  
pp. no-no
Author(s):  
Mita Dasog ◽  
Julian Kehrle ◽  
Bernhard Rieger ◽  
Jonathan G. C. Veinot

Sign in / Sign up

Export Citation Format

Share Document