Analytical drift-diffusion modeling of GaAs solar cells incorporating a back mirror

Author(s):  
Matthew P. Lumb ◽  
Christopher G. Bailey ◽  
Jessica G. J. Adams ◽  
Glen Hillier ◽  
Francis Tuminello ◽  
...  
AIP Advances ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 035026 ◽  
Author(s):  
Timofey Golubev ◽  
Dianyi Liu ◽  
Richard Lunt ◽  
Phillip Duxbury

2013 ◽  
Author(s):  
M. P. Lumb ◽  
M. González ◽  
C. G. Bailey ◽  
I. Vurgaftman ◽  
J. R. Meyer ◽  
...  

2010 ◽  
Author(s):  
Balaji Padmanabhan ◽  
Ashwin Ashok ◽  
Dragica Vasileska ◽  
Y.-H. Zhang ◽  
Marília Caldas ◽  
...  

2014 ◽  
Vol 116 (19) ◽  
pp. 194504 ◽  
Author(s):  
Matthew P. Lumb ◽  
Myles A. Steiner ◽  
John F. Geisz ◽  
Robert J. Walters

2019 ◽  
Author(s):  
Anne Saulin ◽  
Ulrike Horn ◽  
Martin Lotze ◽  
Jochen Kaiser ◽  
Grit Hein

AbstractBecause the motives behind goal-directed behaviors are often complex, most behaviors result from the interplay between different motives. However, it is unclear how this interplay between multiple motives affects the neural computation of goal-directed behaviors. Using a combination of drift-diffusion modeling and fMRI, we show that the interplay between different social motives changes initial preferences for prosocial behavior before a person makes a behavioral choice. This increase in preferences for the prosocial choice option was tracked by neural responses in the bilateral dorsal striatum, which in turn lowered the amount of information necessary for choosing prosocial behavior. We obtained these results using a paradigm in which each participant performed the same behavior based on different, simultaneously activated motives, or based on each of the motives separately. Thus, our findings provide a model of behavioral choice computation in complex motivational states, i.e., the motivational setting that drives most goal-directed human behaviors.


Sign in / Sign up

Export Citation Format

Share Document