Quantitative loss analysis of voltage output characteristics on multi-junction solar cells

Author(s):  
Tetsuya Nakamura ◽  
Lin Zhu ◽  
Masahiro Yoshita ◽  
Mitsuru Imaizumi ◽  
Hidefumi Akiyama ◽  
...  
2018 ◽  
Vol 150 ◽  
pp. 21-27 ◽  
Author(s):  
Jian Wei Ho ◽  
Johnson Wong ◽  
Percis Teena Christopher Subhodayam ◽  
Kwan Bum Choi ◽  
Divya Ananthanarayanan ◽  
...  

Author(s):  
Zhe Liu ◽  
Zekun Ren ◽  
Haohui Liu ◽  
Nasim Sahraei ◽  
Fen Lin ◽  
...  

2012 ◽  
Vol 106 ◽  
pp. 89-94 ◽  
Author(s):  
Benjamin Thaidigsmann ◽  
Johannes Greulich ◽  
Elmar Lohmüller ◽  
Simon Schmeißer ◽  
Florian Clement ◽  
...  
Keyword(s):  

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7594
Author(s):  
Zhao-Wei Gong ◽  
Jin-Gang Li ◽  
Xiang-Qian Tong

This paper presents a series hybrid wireless charging system with an active adjustable circuitry offering constant current and constant voltage output characteristics. The series hybrid system consists of the inductor–capacitor–capacitor (LCC) and series-series (SS) networks are used for improving charging pad misalignment tolerance. An active switch is employed to provide an adjustable CC and CV output for different battery charging stages. To demonstrate the performance of the proposed method, a 310 W prototype was built. A systematic optimization in the parameter of the proposed topology to achieve relative constant output was analyzed within a certain range of the designed operating region. The experimental results indicate that the output current fluctuation is less than 5% with load variations, and the output voltage fluctuation is less than 5% with load varying from 19 to 70 Ω, as the pick-up pads misaligned within 50% of the pad outer diameter.


2015 ◽  
Vol 30 (4) ◽  
pp. 306-310 ◽  
Author(s):  
Nebojsa Stojanovic ◽  
Koviljka Stankovic ◽  
Tomislav Stojic ◽  
Djordje Lazarevic

This paper investigates the output characteristics of photovoltaic solar cells working in hostile working conditions. Examined cells, produced by different innovative procedures, are available in the market. The goal was to investigate stability of electric characteristics of solar cells, which are used today in photovoltaic solar modules for charging rechargeable batteries which, coupled with batteries, supply various electronic systems such as radio repeaters on mountains tops, airplanes, mobile communication stations and other remote facilities. Charging of rechargeable batteries requires up to 25 % higher voltage compared to nominal output voltage of the battery. This paper presents results of research of solar cells, which also apply to cases in which continuous power supply is required.


2010 ◽  
Vol 291-292 (1) ◽  
pp. 287-292 ◽  
Author(s):  
C.N. Hoth ◽  
P. Schilinsky ◽  
S.A. Choulis ◽  
C.J. Brabec

Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2931
Author(s):  
Kwan Hong Min ◽  
Taejun Kim ◽  
Min Gu Kang ◽  
Hee-eun Song ◽  
Yoonmook Kang ◽  
...  

Since the temperature of a photovoltaic (PV) module is not consistent as it was estimated at a standard test condition, the thermal stability of the solar cell parameters determines the temperature dependence of the PV module. Fill factor loss analysis of crystalline silicon solar cell is one of the most efficient methods to diagnose the dominant problem, accurately. In this study, the fill factor analysis method and the double-diode model of a solar cell was applied to analyze the effect of J01, J02, Rs, and Rsh on the fill factor in details. The temperature dependence of the parameters was compared through the passivated emitter rear cell (PERC) of the industrial scale solar cells. As a result of analysis, PERC cells showed different temperature dependence for the fill factor loss of the J01 and J02 as temperatures rose. In addition, we confirmed that fill factor loss from the J01 and J02 at elevated temperature depends on the initial state of the solar cells. The verification of the fill factor loss analysis was conducted by comparing to the fitting results of the injection dependent-carrier lifetime.


Sign in / Sign up

Export Citation Format

Share Document