Cost analysis of 100% renewable electricity provider utilizing surplus electric power of residential PV systems in Japan

Author(s):  
Miku Enomoto ◽  
Yuzuru Ueda
1998 ◽  
Vol 13 (1) ◽  
pp. 70-75 ◽  
Author(s):  
W.D. Kellogg ◽  
M.H. Nehrir ◽  
G. Venkataramanan ◽  
V. Gerez

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Matevz Obrecht ◽  
Rhythm Singh ◽  
Timitej Zorman

PurposeThis paper aims to forecast the availability of used but operational electric vehicle (EV) batteries to integrate them into a circular economy concept of EVs' end-of-life (EOL) phase. Since EVs currently on the roads will become obsolete after 2030, this study focuses on the 2030–2040 period and links future renewable electricity production with the potential for storing it into used EVs' batteries. Even though battery capacity decreases by 80% or less, these batteries will remain operational and can still be seen as a valuable solution for storing peaks of renewable energy production beyond EV EOL.Design/methodology/approachStoring renewable electricity is gaining as much attention as increasing its production and share. However, storing it in new batteries can be expensive as well as material and energy-intensive; therefore, existing capacities should be considered. The use of battery electric vehicles (BEVs) is among the most exciting concepts on how to achieve it. Since reduced battery capacity decreases car manufacturers' interest in battery reuse and recycling is environmentally hazardous, these batteries should be integrated into the future electricity storage system. Extending the life cycle of batteries from EVs beyond the EV's life cycle is identified as a potential solution for both BEVEOL and electricity storage.FindingsResults revealed a rise of photovoltaic (PV) solar power plants and an increasing number of EVs EOL that will have to be considered. It was forecasted that 6.27–7.22% of electricity from PV systems in scenario A (if EV lifetime is predicted to be 20 years) and 18.82–21.68% of electricity from PV systems in scenario B (if EV lifetime is predicted to be 20 years) could be stored in batteries. Storing electricity in EV batteries beyond EV EOL would significantly decrease the need for raw materials, increase energy system and EV sustainability performance simultaneously and enable leaner and more efficient electricity production and distribution network.Practical implicationsStoring electricity in used batteries would significantly decrease the need for primary materials as well as optimizing lean and efficient electricity production network.Originality/valueEnergy storage is one of the priorities of energy companies but can be expensive as well as material and energy-intensive. The use of BEV is among the most interesting concepts on how to achieve it, but they are considered only when in the use phase as vehicle to grid (V2G) concept. Because reduced battery capacity decreases the interest of car manufacturers to reuse batteries and recycling is environmentally risky, these batteries should be used for storing, especially renewable electricity peaks. Extending the life cycle of batteries beyond the EV's life cycle is identified as a potential solution for both BEV EOL and energy system sustainability, enabling more efficient energy management performance. The idea itself along with forecasting its potential is the main novelty of this paper.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6316
Author(s):  
Tarek Berghout ◽  
Mohamed Benbouzid ◽  
Toufik Bentrcia ◽  
Xiandong Ma ◽  
Siniša Djurović ◽  
...  

To ensure the continuity of electric power generation for photovoltaic systems, condition monitoring frameworks are subject to major enhancements. The continuous uniform delivery of electric power depends entirely on a well-designed condition maintenance program. A just-in-time task to deal with several naturally occurring faults can be correctly undertaken via the cooperation of effective detection, diagnosis, and prognostic analyses. Therefore, the present review first outlines different failure modes to which all photovoltaic systems are subjected, in addition to the essential integrated detection methods and technologies. Then, data-driven paradigms, and their contribution to solving this prediction problem, are also explored. Accordingly, this review primarily investigates the different learning architectures used (i.e., ordinary, hybrid, and ensemble) in relation to their learning frameworks (i.e., traditional and deep learning). It also discusses the extension of machine learning to knowledge-driven approaches, including generative models such as adversarial networks and transfer learning. Finally, this review provides insights into different works to highlight various operating conditions and different numbers and types of failures, and provides links to some publicly available datasets in the field. The clear organization of the abundant information on this subject may result in rigorous guidelines for the trends adopted in the future.


Sign in / Sign up

Export Citation Format

Share Document