Incoherent spatial solitons in nematic liquid crystals

Author(s):  
K.G. Makris ◽  
H. Sarkissian ◽  
D.N. Christodoulides ◽  
G. Assanto
2017 ◽  
Vol 9 (2) ◽  
pp. 36 ◽  
Author(s):  
Urszula Anna Laudyn ◽  
Michał Kwaśny ◽  
Mirosław Karpierz ◽  
Gaetano Assanto

Light localization via reorientation in nematic liquid crystals supports multi-component optical spatial solitons, i.e., vector nematicons. By launching three optical beams of different wavelengths and the same input polarization in a bias-free planar cell, we demonstrate a three-color vector nematicon which is self-trapped thanks to its incoherent nature. Full Text: PDF ReferencesG. I. Stegeman and M. Segev, "Optical Spatial Solitons and Their Interactions: Universality and Diversity", Science 286 (5444), 1518 (1999) CrossRef W. Królikowski and O. Bang, "Solitons in nonlocal nonlinear media: Exact solutions", Phys. Rev. E 63, 016610 (2000) CrossRef D. Suter and T. Blasberg, "Stabilization of transverse solitary waves by a nonlocal response of the nonlinear medium", Phys. Rev. A 48, 4583 (1993) CrossRef G. Assanto and M. Peccianti, "Spatial solitons in nematic liquid crystals", IEEE J. Quantum Electron. 39 (1), 13 (2003). CrossRef G. Assanto and M. Karpierz, "Nematicons: self-localised beams in nematic liquid crystals", Liq. Cryst. 36 (10), 1161 (2009) CrossRef M. Peccianti and G. Assanto, "Nematicons", Phys. Rep. 516, 147 (2012). CrossRef M. Peccianti and G. Assanto, "Incoherent spatial solitary waves in nematic liquid crystals", Opt. Lett. 26 (22), 1791 (2001) CrossRef M. Peccianti and G. Assanto, "Nematic liquid crystals: A suitable medium for self-confinement of coherent and incoherent light", Phys. Rev. E Rap. Commun. 65, 035603 (2002) CrossRef G. Assanto, M. Peccianti, C. Umeton, A. De Luca and I. C. Khoo, "Coherent and Incoherent Spatial Solitons in Bulk Nematic Liquid Crystals", Mol. Cryst. Liq. Cryst. 375, 617 (2002) CrossRef A. Alberucci, M. Peccianti, G. Assanto, A. Dyadyusha and M. Kaczmarek, "Two-Color Vector Solitons In Nonlocal Media", Phys. Rev. Lett. 97, 153903 (2006) CrossRef G. Assanto, N. F. Smyth and A. L. Worthy, "Two-color, nonlocal vector solitary waves with angular momentum in nematic liquid crystals", Phys. Rev. A 78 (1), 013832 (2008) CrossRef G. Assanto, K. Garcia-Reimbert, A. A. Minzoni, N. F. Smyth and A. Worthy, "Lagrange solution for three wavelength solitary wave clusters in nematic liquid crystals", Physica D 240, 1213 (2011) CrossRef G. Assanto, A. A. Minzoni and N. F. Smyth, "Vortex confinement and bending with nonlocal solitons", Opt. Lett. 39 (3), 509 (2014) CrossRef G. Assanto, A. A. Minzoni and N. F. Smyth, "Deflection of nematicon-vortex vector solitons in liquid crystals", Phys. Rev. A 89, 013827 (2014) CrossRef G. Assanto and N. F. Smyth, "Soliton Aided Propagation and Routing of Vortex Beams in Nonlocal Media", J. Las. Opt. Photon. 1, 105 (2014) CrossRef Y. V. Izdebskaya, G. Assanto and W. Krolikowski, "Observation of stable-vector vortex solitons", Opt. Lett. 40 (17), 4182 (2015) CrossRef Y. V. Izdebskaya, W. Krolikowski, N. F. Smyth and G. Assanto, "Vortex stabilization by means of spatial solitons in nonlocal media", J. Opt. 18 (5), 054006 (2016) CrossRef J. F. Henninot, J. Blach and M. Warenghem, "Experimental study of the nonlocality of spatial optical solitons excited in nematic liquid crystal", J. Opt. A 9, 20 (2007) CrossRef Y. V. Izdebskaya, V. G. Shvedov, A. S. Desyatnikov, W. Z. Krolikowski, M. Belic, G. Assanto and Y. S. Kivshar, "Counterpropagating nematicons in bias-free liquid crystals", Opt. Express 18 (4), 3258 (2010) CrossRef N. Karimi, A. Alberucci, M. Virkki, M. Kauranen and G. Assanto, "Phase-front curvature effects on nematicon generation", J. Opt. Soc. Am. B 5 (33), 903 (2016) CrossRef P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, Oxford Science Publications (Clarendon Press, 2nd edition, 1993)I. C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena (Wiley, New York, 1995)A. Piccardi, M. Trotta, M. Kwasny, A. Alberucci, R. Asquini, M. Karpierz, A. d'Alessandro and G. Assanto, "Trends and trade-offs in nematicon propagation", Appl. Phys. B 104 (4), 805 (2011) CrossRef M. Kwasny, U. A. Laudyn, F. A. Sala, A. Alberucci, M. A. Karpierz and G. Assanto, "Self-guided beams in low-birefringence nematic liquid crystals", Phys. Rev. A 86 (1), 01382 (2012) CrossRef M. Peccianti, A. Fratalocchi and G. Assanto, "Transverse dynamics of nematicons", Opt. Express 12 (26), 6524 (2004) CrossRef C. Conti, M. Peccianti and G. Assanto, "Observation of Optical Spatial Solitons in a Highly Nonlocal Medium", Phys. Rev. Lett. 92 (11), 113902 (2004) CrossRef A. Alberucci, C.-P. Jisha and G. Assanto, "Breather solitons in highly nonlocal media", J. Opt. 18, 125501 (2016) CrossRef


2019 ◽  
Vol 9 (2) ◽  
pp. 347 ◽  
Author(s):  
Eugenio Fazio ◽  
Massimo Alonzo ◽  
Alessandro Belardini

A great deal of interest over the years has been directed to the optical space solitons for the possibility of realizing 3D waveguides with very low propagation losses. A great limitation in their use for writing complex circuits is represented by the impossibility of making curved structures. In the past, solitons in nematic liquid crystals, called nematicons, were reflected on electrical interfaces, and more recently photorefractive spatial solitons have been, as well. In the present work, we investigate refraction and total reflection of spatial solitons with saturable electro-optic nonlinearity, such as the photorefractive ones, on an electric wall acting as a reflector. Using a custom FDTD code, the propagation of a self-confined beam was analyzed as a function of the applied electric bias. The electrical reflector was simulated by applying different biases in two adjacent volumes. We observed both smaller and larger angles of refraction, up to the critical π/2-refraction condition, and then the total reflection. The radii of curvature of the associated guides can be varied from centimeters down to hundreds of microns. The straight guides showed losses as low as 0.07 dB/cm as previously observed, while the losses associated with single curves were estimated to be as low as 0.2 dB.


2001 ◽  
Author(s):  
Marco Peccianti ◽  
Cesare Umeton ◽  
Iam-Choon Khoo ◽  
Alfredo DeRossi ◽  
Gaetano Assanto

2018 ◽  
Vol 10 (4) ◽  
pp. 103 ◽  
Author(s):  
Gaetano Assanto ◽  
Sreekanth Perumbilavil ◽  
Armando Piccardi ◽  
Martti Kauranen

Using an external low-frequency electric field applied to dye-doped nematic liquid crystals, we demonstrate that random lasing obtained by optical pumping can be steered in angular direction by routing an all-optical waveguide able to collect the emitted light. By varying the applied voltage from 0 to 2 V, we reduce the walk-off and sweep the random laser guided beam over 7 degrees. Full Text: PDF ReferencesV. S. Letokhov, "Generation of light by a scattering medium with negative resonance absorption," Sov. Phys. JETP 26 (4), 835 (1968). DirectLink H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, "Spatial Confinement of Laser Light in Active Random Media," Phys. Rev. Lett. 84 (24), 5584 (2000). CrossRef D. S. Wiersma, "The physics and applications of random lasers," Nature Phys. 4 (5) 359-367 (2008). CrossRef D. Wiersma and S. Cavalieri, "A temperature-tunable random laser," Nature 414, 708-709 (2001). CrossRef G. Strangi, S. Ferjani, V. Barna, A. De Luca, N. Scaramuzza, C. Versace, C. Umeton, and R. Bartolino, "Random lasing and weak localization of light in dye-doped nematic liquid crystals," Opt. Express 14 (17), 7737 (2006). CrossRef G. Strangi, S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, and R. Bartolino, "Random lasing in dye doped nematic liquid crystals: the role of confinement geometry," SPIE 6587, 65870P (2007) doi: 10.1117/12.722887 CrossRef S. Ferjani, V. Barna, A. De Luca, C. Versace, and G. Strangi, "Random lasing in freely suspended dye-doped nematic liquid crystals," Opt. Lett. 33(6), 557-559 (2008). CrossRef S. Ferjani, L-V. Sorriso, V. Barna, A. De Luca, R. De Marco, and G. Strangi, "Statistical analysis of random lasing emission properties in nematic liquid crystals," Phys. Rev. E 78 (1) 011707 (2008). CrossRef H. Bian, F. Yao, H. Liu, F. Huang, Y. Pei, C. Hou, and X. Sun, "Optically controlled random lasing based on photothermal effect in dye-doped nematic liquid crystals," Liq. Cryst. 41 (10), 1436-1441 (2014) CrossRef C. R. Lee, S. H. Lin, C. H. Guo, S. H. Chang, T. S. Mo, and S. C. Chu, "All-optically controllable random laser based on a dye-doped polymer-dispersed liquid crystal with nano-sized droplets," Opt. Express 18 (3), 2406-2412 (2010) CrossRef S. Perumbilavil, A. Piccardi, O. Buchnev, M. Kauranen, G. Strangi, and G. Assanto, "Soliton-assisted random lasing in optically-pumped liquid crystals," Appl. Phys. Lett. 109(16), 161105 (2016); ibid. 110(1), 1019902 (2017). CrossRef S. Perumbilavil, A. Piccardi, O. Buchnev, M. Kauranen, G. Strangi, and G. Assanto, "All-optical guided-wave random laser in nematic liquid crystals", Opt. Express 25 (5), 4672-4679 (2017). CrossRef S. Perumbilavil, A. Piccardi, R. Barboza, O. Buchnev, M. Kauranen, G. Strangi, and G. Assanto, "Beaming random laser with soliton control," Nature Comm., in press (2018) CrossRef M. Peccianti, C. Conti, G. Assanto, A. De Luca and C. Umeton, "Routing of Anisotropic Spatial Solitons and Modulational Instability in liquid crystals," Nature 432, 733-737 (2004). CrossRef J. Beeckman, K. Neyts and M. Haeltermann, "Patterned electrode steering of nematicons," J. Opt. A - Pure Appl. Opt. 8 (2), 214-220 (2006). CrossRef A. Piccardi, M. Peccianti, G. Assanto, A. Dyadyusha and M. Kaczmarek, "Voltage-driven in-plane steering of nematicons," Appl. Phys. Lett. 94, 091106 (2009). CrossRef R. Barboza, A. Alberucci, and G. Assanto, "Large electro-optic beam steering with Nematicons", Opt. Lett. 36 (14), 2611–2613 (2011). CrossRef A. Piccardi, A. Alberucci, R. Barboza, O. Buchnev, M. Kaczmarek, and G. Assanto, "In-plane steering of nematicon waveguides across an electrically adjusted interface", Appl. Phys. Lett. 100 (25), 251107 (2012). CrossRef Y. V. Izdebskaya, "Routing of spatial solitons by interaction with rod microelectrodes," Opt. Lett. 39(6), 1681-1684 (2014). CrossRef A. Pasquazi, A. Alberucci, M. Peccianti, and G. Assanto, "Signal processing by opto-optical interactions between self-localized and free propagating beams in liquid crystals," Appl. Phys. Lett. 87, 261104 (2005). CrossRef S. V. Serak, N. V. Tabiryan, M. Peccianti and G. Assanto, "Spatial Soliton All-Optical Logic Gates", IEEE Photon. Technol. Lett. 18 (12), 1287-1289 (2006). CrossRef M. Peccianti, C. Conti, G. Assanto, A. De Luca and C. Umeton, "All Optical Switching and Logic Gating with Spatial Solitons in Liquid Crystals," Appl. Phys. Lett. 81(18), 3335-3337 (2002). CrossRef A. Fratalocchi, A. Piccardi, M. Peccianti and G. Assanto, "Nonlinearly controlled angular momentum of soliton clusters," Opt. Lett. 32(11), 1447-1449 (2007). CrossRef Y. Izdebskaya, V. Shvedov, G. Assanto, and W. Krolikowski, Nat. Comm. 8, 14452 (2017). CrossRef M. Peccianti and G. Assanto, "Nematicons," Phys. Rep. 516, 147-208 (2012). CrossRef Y. Izdebskaya, A. Desyatnikov, G. Assanto and Y. Kivshar, "Deflection of nematicons through interaction with dielectric particles," J. Opt. Soc. Am. B 30(6), 1432-1437 (2013). CrossRef U. Laudyn, M. Kwasny, F. Sala, M. Karpierz, N. F. Smyth, and G. Assanto,"Curved solitons subject to transverse acceleration in reorientational soft matter," Sci. Rep. 7, 12385 (2017). CrossRef A. Alberucci, A. Piccardi, M. Peccianti, M. Kaczmarek and G. Assanto, "Propagation of spatial optical solitons in a dielectric with adjustable nonlinearity", Phys. Rev. A 82, 023806 (2010). CrossRef


2002 ◽  
Vol 375 ◽  
pp. 617-629 ◽  
Author(s):  
G. Assanto ◽  
M. Peccianti ◽  
C. Umeton ◽  
A. De Luca ◽  
I. C. Khoo

Author(s):  
Marco Peccianti ◽  
Alessandro Alberucci ◽  
Gaetano Assanto ◽  
Antonio De Luca ◽  
Gianluca Coschignano ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document