SIMO RSS measurement in Bluetooth low power indoor positioning system

Author(s):  
S. Rozum ◽  
J. Sebesta
Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xiaona Zhang ◽  
Shufang Zhang ◽  
Shuaiheng Huai

In this article, we use a low-power iBeacon network to conduct an in-depth analysis and research on the principle of indoor positioning and adopt an efficient and fast positioning algorithm. Secondly, based on the obtained analysis, an iBeacon-based indoor positioning system is proposed to analyze how to use iBeacon for accurate positioning and whether it can effectively compensate for the current mainstream positioning system. We analyze the requirements of the iBeacon-based indoor positioning system and propose the design of this positioning system. We analyze the platform and environment for software development, design the general framework of the positioning system, and analyze the logical structure of the whole system, the structure of data flow, and the communication protocols between each module of the positioning system. Then, we analyze the functions of the server module and the client module of the system, implement the functions of each module separately, and debug the functions of each module separately after each module is implemented. The feasibility of the algorithm and the performance improvement are confirmed by the experimental data. Our results show that the communication distance is improved by approximately 20.25% and the accuracy is improved by 5.62% compared to other existing results.


Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1401
Author(s):  
Haq Nawaz ◽  
Ahsen Tahir ◽  
Nauman Ahmed ◽  
Ubaid U. Fayyaz ◽  
Tayyeb Mahmood ◽  
...  

Global navigation satellite systems have been used for reliable location-based services in outdoor environments. However, satellite-based systems are not suitable for indoor positioning due to low signal power inside buildings and low accuracy of 5 m. Future smart homes demand low-cost, high-accuracy and low-power indoor positioning systems that can provide accuracy of less than 5 m and enable battery operation for mobility and long-term use. We propose and implement an intelligent, highly accurate and low-power indoor positioning system for smart homes leveraging Gaussian Process Regression (GPR) model using information-theoretic gain based on reduction in differential entropy. The system is based on Time Difference of Arrival (TDOA) and uses ultra-low-power radio transceivers working at 434 MHz. The system has been deployed and tested using indoor measurements for two-dimensional (2D) positioning. In addition, the proposed system provides dual functionality with the same wireless links used for receiving telemetry data, with configurable data rates of up to 600 Kbauds. The implemented system integrates the time difference pulses obtained from the differential circuitry to determine the radio frequency (RF) transmitter node positions. The implemented system provides a high positioning accuracy of 0.68 m and 1.08 m for outdoor and indoor localization, respectively, when using GPR machine learning models, and provides telemetry data reception of 250 Kbauds. The system enables low-power battery operation with consumption of <200 mW power with ultra-low-power CC1101 radio transceivers and additional circuits with a differential amplifier. The proposed system provides low-cost, low-power and high-accuracy indoor localization and is an essential element of public well-being in future smart homes.


Sign in / Sign up

Export Citation Format

Share Document