An Automatic Segmentation Algorithm of Boundary Layers from B-Mode Ultrasound Images

Author(s):  
Amit Kumar ◽  
Pratibha
2020 ◽  
Vol 7 (11) ◽  
pp. 201342
Author(s):  
A. E. Clark ◽  
B. Biffi ◽  
R. Sivera ◽  
A. Dall'Asta ◽  
L. Fessey ◽  
...  

Fetal craniofacial abnormalities are challenging to detect and diagnose on prenatal ultrasound (US). Image segmentation and computer analysis of three-dimensional US volumes of the fetal face may provide an objective measure to quantify fetal facial features and identify abnormalities. We have developed and tested an atlas-based partially automated facial segmentation algorithm; however, the volumes require additional manual segmentation (MS), which is time and labour intensive and may preclude this method from clinical adoption. These manually refined segmentations can then be used as a reference (atlas) by the partially automated segmentation algorithm to improve algorithmic performance with the aim of eliminating the need for manual refinement and developing a fully automated system. This study assesses the inter- and intra-operator variability of MS and tests an optimized version of our automatic segmentation (AS) algorithm. The manual refinements of 15 fetal faces performed by three operators and repeated by one operator were assessed by Dice score, average symmetrical surface distance and volume difference. The performance of the partially automatic algorithm with difference size atlases was evaluated by Dice score and computational time. Assessment of the manual refinements showed low inter- and intra-operator variability demonstrating its suitability for optimizing the AS algorithm. The algorithm showed improved performance following an increase in the atlas size in turn reducing the need for manual refinement.


2021 ◽  
pp. 016173462110425
Author(s):  
Jianing Xi ◽  
Jiangang Chen ◽  
Zhao Wang ◽  
Dean Ta ◽  
Bing Lu ◽  
...  

Large scale early scanning of fetuses via ultrasound imaging is widely used to alleviate the morbidity or mortality caused by congenital anomalies in fetal hearts and lungs. To reduce the intensive cost during manual recognition of organ regions, many automatic segmentation methods have been proposed. However, the existing methods still encounter multi-scale problem at a larger range of receptive fields of organs in images, resolution problem of segmentation mask, and interference problem of task-irrelevant features, obscuring the attainment of accurate segmentations. To achieve semantic segmentation with functions of (1) extracting multi-scale features from images, (2) compensating information of high resolution, and (3) eliminating the task-irrelevant features, we propose a multi-scale model with skip connection framework and attention mechanism integrated. The multi-scale feature extraction modules are incorporated with additive attention gate units for irrelevant feature elimination, through a U-Net framework with skip connections for information compensation. The performance of fetal heart and lung segmentation indicates the superiority of our method over the existing deep learning based approaches. Our method also shows competitive performance stability during the task of semantic segmentations, showing a promising contribution on ultrasound based prognosis of congenital anomaly in the early intervention, and alleviating the negative effects caused by congenital anomaly.


2018 ◽  
Vol 13 (11) ◽  
pp. 1707-1716 ◽  
Author(s):  
M. Villa ◽  
G. Dardenne ◽  
M. Nasan ◽  
H. Letissier ◽  
C. Hamitouche ◽  
...  

2016 ◽  
Vol 10 (1) ◽  
pp. 18-27 ◽  
Author(s):  
Matteo Aventaggiato ◽  
Maurizio Muratore ◽  
Paola Pisani ◽  
Aimè Lay-Ekuakille ◽  
Francesco Conversano ◽  
...  

Author(s):  
Jennifer Nitsch ◽  
Jan Klein ◽  
Dorothea Miller ◽  
Ulrich Sure ◽  
Horst K. Hahn

Sign in / Sign up

Export Citation Format

Share Document