A semi-automatic and an automatic segmentation algorithm to remove the internal organs from live pig CT images

2017 ◽  
Vol 140 ◽  
pp. 290-302 ◽  
Author(s):  
Pau Xiberta ◽  
Imma Boada ◽  
Anton Bardera ◽  
Maria Font-i-Furnols
2017 ◽  
Author(s):  
◽  
D. E. Rodríguez-Obregón

A method to estimate the pulmonary fibrosis in computed tomography (CT) imaging is presented. A semi-automatic segmentation algorithm based on the Chan-Vese method was used. The proposed method shows a similar fibrosis region with respect to clinical expert. However, the results need to be validated in a bigger data base. The proposed method approximates a fibrosis percentage that allows to achieve this procedure easily in order to support its implementation in the clinical practice minimizing the clinical expert subjectivity and generating a quantitativeestimation of fibrosis region.


2017 ◽  
Author(s):  
◽  
D. E. Rodríguez-Obregón

A method to estimate the pulmonary fibrosis in computed tomography (CT) imaging is presented. A semi-automatic segmentation algorithm based on the Chan-Vese method was used. The proposed method shows a similar fibrosis region with respect to clinical expert. However, the results need to be validated in a bigger data base. The proposed method approximates a fibrosis percentage that allows to achieve this procedure easily in order to support its implementation in the clinical practice minimizing the clinical expert subjectivity and generating a quantitativeestimation of fibrosis region.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jared Hamwood ◽  
Beat Schmutz ◽  
Michael J. Collins ◽  
Mark C. Allenby ◽  
David Alonso-Caneiro

AbstractThis paper proposes a fully automatic method to segment the inner boundary of the bony orbit in two different image modalities: magnetic resonance imaging (MRI) and computed tomography (CT). The method, based on a deep learning architecture, uses two fully convolutional neural networks in series followed by a graph-search method to generate a boundary for the orbit. When compared to human performance for segmentation of both CT and MRI data, the proposed method achieves high Dice coefficients on both orbit and background, with scores of 0.813 and 0.975 in CT images and 0.930 and 0.995 in MRI images, showing a high degree of agreement with a manual segmentation by a human expert. Given the volumetric characteristics of these imaging modalities and the complexity and time-consuming nature of the segmentation of the orbital region in the human skull, it is often impractical to manually segment these images. Thus, the proposed method provides a valid clinical and research tool that performs similarly to the human observer.


Author(s):  
Qi Yang ◽  
Yunke Li ◽  
Mengyi Zhang ◽  
Tian Wang ◽  
Fei Yan ◽  
...  

2007 ◽  
Vol 16 (04) ◽  
pp. 583-592 ◽  
Author(s):  
HYOUNGSEOP KIM ◽  
MASAKI MAEKADO ◽  
JOO KOOI TAN ◽  
SEIJI ISHIKAWA ◽  
MASAAKI TSUKUDA

Medical imaging systems such as computed tomography, magnetic resonance imaging provided a high resolution image for powerful diagnostic tool in visual inspection fields by physician. Especially MDCT image can be used to obtain detailed images of the pulmonary anatomy, including pulmonary diseases such as the pulmonary nodules, the pulmonary vein, etc. In the medical image processing technique, segmentation is a difficult task because surrounding soft tissues and organs have similar CT values and sometimes contact with each other. We propose a new technique for automatic segmentation of lung regions and its classification for ground-glass opacity from the extracted lung regions by computer based on a set of the thorax CT images. In this paper, we segment the lung region for extraction of the region of interest employing binarization and labeling process from the inputted each slices images. The region having the largest area is regarded as the tentative lung regions. Furthermore, the ground-glass opacity is classified by correlation distribution on the slice to slice from the extracted lung region with respect to the thorax CT images. Experiment is performed employing twenty six thorax CT image sets and 96% of recognition rates were achieved. Obtained results are shown along with a discussion.


2018 ◽  
Vol 41 (4) ◽  
pp. 1009-1020 ◽  
Author(s):  
Mina Zareie ◽  
Hossein Parsaei ◽  
Saba Amiri ◽  
Malik Shahzad Awan ◽  
Mohsen Ghofrani

2014 ◽  
Vol 721 ◽  
pp. 783-787
Author(s):  
Shao Hu Peng ◽  
Hyun Do Nam ◽  
Yan Fen Gan ◽  
Xiao Hu

Automatic segmentation of the line-like regions plays a very important role in the automatic recognition system, such as automatic cracks recognition in X-ray images, automatic vessels segmentation in CT images. In order to automatically segment line-like regions in the X-ray/CT images, this paper presents a robust line filter based on the local gray level variation and multiscale analysis. The proposed line filter makes usage of the local gray level and its local variation to enhance line-like regions in the X-ray/CT image, which can well overcome the problems of the image noises and non-uniform intensity of the images. For detecting various sizes of line-like regions, an image pyramid is constructed based on different neighboring distances, which enables the proposed filter to analyze different sizes of regions independently. Experimental results showed that the proposed line filter can well segment various sizes of line-like regions in the X-ray/CT images, which are with image noises and non-uniform intensity problems.


Sign in / Sign up

Export Citation Format

Share Document