Improvement of overall performance of Benghazi North combined power plant by retrofitting the inlet cooling with a single effect absorption chiller

Author(s):  
Salah Masheiti ◽  
Jamal Abdusamad ◽  
Awad Shamekh ◽  
Awad Bodalal
Author(s):  
Mamdouh El Haj Assad ◽  
Milad Sadeghzadeh ◽  
Mohammad Hossein Ahmadi ◽  
Mohammad Al‐Shabi ◽  
Mona Albawab ◽  
...  

Author(s):  
Hamad H. Almutairi ◽  
Jonathan Dewsbury ◽  
Gregory F. Lane-Serff

This study examined the viability of a single-effect water/lithium bromide absorption chiller driven by steam extracted from the steam turbine in the configuration of a combined cycle power plant (CCPP). System performance was verified based on the annual cooling load profile of 1,000 typical houses in Kuwait obtained from DesignBuilder building simulation software. Computer models that represented a CCPP with an absorption chiller and a CCPP with a Direct-Expansion (DX) air conditioning system were developed using Engineering Equation Solver software. The computer models interacted with the cooling load profiles obtained from DesignBuilder. Analysis shows that the CCPP with the absorption chiller yielded less net electrical power to the utility grid compared to similar CCPPs giving electricity both to the grid and to the Direct-Expansion air conditioning systems given the same cooling requirements. The reason for this finding is the reduction in steam turbine power output resulting from steam extraction.


Author(s):  
M. Gambini ◽  
M. Vellini

In this paper the overall performance of a new advanced mixed cycle (AMC), fed by hydrogen-rich fuel gas, has been evaluated. Obviously, hydrogen must be produced and here we have chosen the coal gasification for its production, quantifying all the thermal and electric requirements. At first, a simple combination between hydrogen production section and power section is performed. In fact, the heat loads of the first section can be satisfied by using the various raw syngas cooling, without using some material streams taken from the power section, but also without using part of heat, available in the production section and rejected into the environment, in the power section. The final result is very poor: over 34%. Then, by using the Pinch Technology, a more efficient, even if more complex, solution can be conceived: in this case the overall efficiency is very interesting: 39%. These results are very similar to those of a combined cycle power plant, equipped with the same systems and analyzed under the same hypotheses. The final result is very important because the “clean” use of coal in new power plant types must be properly investigated: in fact coal is the most abundant and the cheapest fossil fuel available on earth; moreover, hydrogen production, by using coal, is an interesting outlook because hydrogen has the potential to become the main energy carrier in a future sustainable energy economy.


2013 ◽  
Vol 17 (2) ◽  
pp. 497-508 ◽  
Author(s):  
Thamir Ibrahim ◽  
M.M. Rahman

The thermodynamic analyses of the triple-pressure reheat combined cycle gas turbines with duct burner are presented and discussed in this paper. The overall performance of a combined cycle gas turbine power plant is influenced by the ambient temperature, compression ratio and turbine inlet temperature. These parameters affect the overall thermal efficiency, power output and the heat-rate. In this study a thermodynamic model was development on an existing actual combined cycle gas turbine (CCGT) (In this case study, an effort has been made to enhance the performance of the CCGT through a parametric study using a thermodynamic analysis. The effect of ambient temperature and operation parameter, including compression ratio and turbine inlet temperature, on the overall performance of CCGT are investigated. The code of the performance model for CCGT power plant was developed utilizing the THERMOFLEX software. The simulating results show that the total power output and overall efficiency of a CCGT decrease with increase the ambient temperature because increase the consumption power in the air compressor of a GT. The totals power of a CCGT decreases with increase the compression rate, while the overall efficiency of a CCGT increases with increase the compression ratio to 21, after that the overall efficiency will go down. Far there more the turbine inlet temperature increases the both total power and overall efficiency increase, so the turbine inlet temperature has a strong effect on the overall performance of CCGT power plant. Also the simulation model give a good result compared with MARAFIQ CCGT power plant. With these variables, the turbine inlet temperature causes the greatest overall performance variation.


1999 ◽  
Vol 122 (2) ◽  
pp. 247-254 ◽  
Author(s):  
Richard A. Newby ◽  
Wen-Ching Yang ◽  
Ronald L. Bannister

Fuel gas cleanup processing significantly influences overall performance and cost of IGCC power generation. The raw fuel gas properties (heating value, sulfur content, alkali content, ammonia content, “tar” content, particulate content) and the fuel gas cleanup requirements (environmental and turbine protection) are key process parameters. Several IGCC power plant configurations and fuel gas cleanup technologies are being demonstrated or are under development. In this evaluation, air-blown, fluidized-bed gasification combined-cycle power plant thermal performance is estimated as a function of fuel type (coal and biomass fuels), extent of sulfur removal required, and the sulfur removal technique. Desulfurization in the fluid bed gasifier is combined with external hot fuel gas desulfurization, or, alternatively with conventional cold fuel gas desulfurization. The power plant simulations are built around the Siemens Westinghouse 501F combustion turbine in this evaluation. [S0742-4795(00)00502-0]


Sign in / Sign up

Export Citation Format

Share Document