Analysis of the error generated by the voltage output accelerometer using the optimal structure of an artificial neural network

Author(s):  
Marek Dudzik ◽  
Krzysztof Tomczyk ◽  
Adam St. Jagiello
2021 ◽  
Vol 3 (1) ◽  
pp. 30-36
Author(s):  
A. G. Kazarian ◽  
◽  
V. M. Teslyuk ◽  
I. Ya. Kazymyra ◽  
◽  
...  

A method for optimal structure selection of hidden layers of the artificial neural network (ANN) is proposed. Its main idea is the practical application of several internal structures of ANN and further calculation of the error of each hidden layer structure using identical data sets for ANN training. The method is based on the alternate comparison of the expected result values and the actual results of the feedforward artificial neural networks with a different number of inner layers and a different number of neurons on each layer. The method afforces searching the optimal internal structure of ANN for usage in the development of "smart" house systems and for calculation of the optimal energy consumption level in accordance with current conditions, such as room temperature, presence of people, and time of the day. The usage of the presented method allows to reduce the time spent on choosing the effective structure of the artificial neural network at the initial stages of research and to pay more attention to the relationship between the input and output data, as well as to such important parameters of the ANN learning process, as a number of training iterations, minimal training error, etc. The software has been developed that allows to carry out the processes of training, testing, and obtaining the output results of the algorithm of the artificial neural network, such as the expected value of power consumption and operating time of each individual appliance. The disadvantage of the approach used in finding the optimal internal structure of the artificial neural network is that each subsequent structure is created on the basis of the most efficient of the previously created structures without analyzing other structures that showed worse results with fewer hidden layers. It was found that to improve the solution of this problem it is necessary to create a mechanism which will be based on the analysis of input data, output data, will analyze the internal relationships between parameters and will optimize the network structure at each stage using certain logical rules according to the results obtained in the previous step. It is established that this problem is a nonlinear programming problem that can be solved in the further development of this study.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohammad Hemmat Esfe ◽  
Davood Toghraie

AbstractThis study presents the design of an artificial neural network (ANN) to evaluate and predict the viscosity behavior of Al2O3/10W40 nanofluid at different temperatures, shear rates, and volume fraction of nanoparticles. Nanofluid viscosity ($${\mu }_{nf}$$ μ nf ) is evaluated at volume fractions ($$\varphi$$ φ =0.25% to 2%) and temperature range of 5 to 55 °C. For modeling by ANN, a multilayer perceptron (MLP) network with the Levenberg–Marquardt algorithm (LMA) is used. The main purpose of this study is to model and predict the $${\mu }_{nf}$$ μ nf of Al2O3/10W40 nanofluid through ANN, select the best ANN structure from the set of predicted structures and manage time and cost by predicting the ANN with the least error. To model the ANN, $$\varphi$$ φ , temperature, and shear rate are considered as input variables, and $${\mu }_{nf}$$ μ nf is considered as output variable. From 400 different ANN structures for Al2O3/10W40 nanofluid, the optimal structure consisting of two hidden layers with the optimal structure of 6 neurons in the first layer and 4 neurons in the second layer is selected. Finally, the R regression coefficient and the MSE are 0.995838 and 4.14469E−08 for the optimal structure, respectively. According to all data, the margin of deviation (MOD) is in the range of less than 2% < MOD < + 2%. Comparison of the three data sets, namely laboratory data, correlation output, and ANN output, shows that the ANN estimates laboratory data more accurately.


2000 ◽  
Vol 25 (4) ◽  
pp. 325-325
Author(s):  
J.L.N. Roodenburg ◽  
H.J. Van Staveren ◽  
N.L.P. Van Veen ◽  
O.C. Speelman ◽  
J.M. Nauta ◽  
...  

2004 ◽  
Vol 171 (4S) ◽  
pp. 502-503
Author(s):  
Mohamed A. Gomha ◽  
Khaled Z. Sheir ◽  
Saeed Showky ◽  
Khaled Madbouly ◽  
Emad Elsobky ◽  
...  

1998 ◽  
Vol 49 (7) ◽  
pp. 717-722 ◽  
Author(s):  
M C M de Carvalho ◽  
M S Dougherty ◽  
A S Fowkes ◽  
M R Wardman

Sign in / Sign up

Export Citation Format

Share Document