scholarly journals SELECTION OF THE OPTIMAL STRUCTURE OF HIDDEN LAYERS OF THE ARTIFICIAL NEURAL NETWORK FOR ENERGY EFFICIENCY ANALYSIS

2021 ◽  
Vol 3 (1) ◽  
pp. 30-36
Author(s):  
A. G. Kazarian ◽  
◽  
V. M. Teslyuk ◽  
I. Ya. Kazymyra ◽  
◽  
...  

A method for optimal structure selection of hidden layers of the artificial neural network (ANN) is proposed. Its main idea is the practical application of several internal structures of ANN and further calculation of the error of each hidden layer structure using identical data sets for ANN training. The method is based on the alternate comparison of the expected result values and the actual results of the feedforward artificial neural networks with a different number of inner layers and a different number of neurons on each layer. The method afforces searching the optimal internal structure of ANN for usage in the development of "smart" house systems and for calculation of the optimal energy consumption level in accordance with current conditions, such as room temperature, presence of people, and time of the day. The usage of the presented method allows to reduce the time spent on choosing the effective structure of the artificial neural network at the initial stages of research and to pay more attention to the relationship between the input and output data, as well as to such important parameters of the ANN learning process, as a number of training iterations, minimal training error, etc. The software has been developed that allows to carry out the processes of training, testing, and obtaining the output results of the algorithm of the artificial neural network, such as the expected value of power consumption and operating time of each individual appliance. The disadvantage of the approach used in finding the optimal internal structure of the artificial neural network is that each subsequent structure is created on the basis of the most efficient of the previously created structures without analyzing other structures that showed worse results with fewer hidden layers. It was found that to improve the solution of this problem it is necessary to create a mechanism which will be based on the analysis of input data, output data, will analyze the internal relationships between parameters and will optimize the network structure at each stage using certain logical rules according to the results obtained in the previous step. It is established that this problem is a nonlinear programming problem that can be solved in the further development of this study.

Author(s):  
Gang Sun ◽  
Shuyue Wang

Artificial neural network surrogate modeling with its economic computational consumption and accurate generalization capabilities offers a feasible approach to aerodynamic design in the field of rapid investigation of design space and optimal solution searching. This paper reviews the basic principle of artificial neural network surrogate modeling in terms of data treatment and configuration setup. A discussion of artificial neural network surrogate modeling is held on different objectives in aerodynamic design applications, various patterns of realization via cutting-edge data technique in numerous optimizations, selection of network topology and types, and other measures for improving modeling. Then, new frontiers of modern artificial neural network surrogate modeling are reviewed with regard to exploiting the hidden information for bringing new perspectives to optimization by exploring new data form and patterns, e.g. quick provision of candidates of better aerodynamic performance via accumulated database instead of random seeding, and envisions of more physical understanding being injected to the data manipulation.


Author(s):  
Wan n Nazirah Wan Md Adna ◽  
Nofri Yenita Dahlan ◽  
Ismail Musirin

This paper presents a Hybrid Artificial Neural Network (HANN) for chiller system Measurement and Verification (M&V) model development. In this work, hybridization of Evolutionary Programming (EP) and Artificial Neural Network (ANN) are considered in modeling the baseline electrical energy consumption for a chiller system hence quantifying saving. EP with coefficient of correlation (R) objective function is used in optimizing the neural network training process and selecting the optimal values of ANN initial weights and biases. Three inputs that are affecting energy use of the chiller system are selected; 1) operating time, 2) refrigerant tonnage and 3) differential temperature. The output is hourly energy use of building air-conditioning system. The HANN model is simulated with 16 different structures and the results reveal that all HANN structures produce higher prediction performance with R is above 0.977. The best structure with the highest value of R is selected as the baseline model hence is used to determine the saving. The avoided energy calculated from this model is 132944.59 kWh that contributes to 1.38% of saving percentage.


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5115
Author(s):  
Xiongchao Lin ◽  
Wenshuai Xi ◽  
Jinze Dai ◽  
Caihong Wang ◽  
Yonggang Wang

Molten gasification is considered as a promising technology for the processing and safe disposal of hazardous wastes. During this process, the organic components are completely converted while the hazardous materials are safely embedded in slag via the fusion-solidification-vitrification transformation. Ideally, the slag should be glassy with low viscosity to ensure the effective immobilization and steady discharge of hazardous materials. However, it is very difficult to predict the characteristics of slag using existing empirical equations or conventional mathematical methods, due to the complex non-linear relationship among the phase transformation, vitrification transition and chemical composition of slag. Equipped with a strong nonlinear mapping ability, an artificial neural network may be able to predict the properties of slags if a large amount of data is available for training. In this work, over 10,000 experimental data points were used to train and develop a slag classification model (glassy vs. non-glassy) based on a neural network. The optimal structure of the neural network was figured out and validated. The results suggest that the classification accuracy for the independent test samples reached 93.3%. Using 1 and 0 as model inputs to represent mildly reducing and inert atmospheres, a double hidden layer structure in the neural network enabled the accurate classification of slags under various atmospheres. Furthermore, the neural network for the prediction of glassy slag viscosity was optimized; it featured a double hidden layer structure. Under a mildly reducing atmosphere, the absolute error from the independent test data was generally within 4 Pa·s. By adding a gas atmosphere into the input of the neural network using a simple normalization method, a multi-atmosphere slag viscosity prediction model was developed. Said model is much more accurate than its counterpart that does not consider the effect of the atmosphere. In summary, the artificial neural network proved to be an effective approach to predicting the slag properties under different atmospheres. The data-driven models developed in this work are expected to facilitate the commercial deployment of molten gasification technology.


2015 ◽  
Vol 766-767 ◽  
pp. 1201-1206 ◽  
Author(s):  
K. Venkatraman ◽  
B. Vijaya Ramnath ◽  
R. Sarvesh ◽  
C. Rohit Prasanna

The selection of a manufacturing method for developing new products with optimal quality, minimal cost in the shortest time possible is a important phase of the industry. This paper uses artificial neural network to facilitate for product manufacturing method selection. Initially, general sorting is employed to select an initial product platform. Then using repertory grids method, designers contribute importance ratings to the design options. These ratings are employed to reduce the number of the derived design options, and thereby used as input data to a neural network. The neural network is then trained by using Levenberg-Marquart Algorithm in Mat lab software. The trained neural network is applied to classify the set of options into different patterns. The classification results can subsequently serve as base for the screening of preferred manufacturing options.


Sign in / Sign up

Export Citation Format

Share Document