A mixed elastic and rigid-body dynamic model of an actuation redundant parallel robot with high-reduction gears

Author(s):  
S. Kock ◽  
W. Schumacher
Author(s):  
Yue-Qing Yu ◽  
Qian Li ◽  
Qi-Ping Xu

An intensive study on the dynamic modeling and analysis of compliant mechanisms is presented in this paper based on the pseudo-rigid-body model. The pseudo-rigid-body dynamic model with single degree-of-freedom is proposed at first and the dynamic equation of the 1R pseudo-rigid-body dynamic model for a flexural beam is presented briefly. The pseudo-rigid-body dynamic models with multi-degrees-of-freedom are then derived in detail. The dynamic equations of the 2R pseudo-rigid-body dynamic model and 3R pseudo-rigid-body dynamic model for the flexural beams are obtained using Lagrange equation. Numerical investigations on the natural frequencies and dynamic responses of the three pseudo-rigid-body dynamic models are made. The effectiveness and superiority of the pseudo-rigid-body dynamic model has been shown by comparing with the finite element analysis method. An example of a compliant parallel-guiding mechanism is presented to investigate the dynamic behavior of the mechanism using the 2R pseudo-rigid-body dynamic model.


2017 ◽  
Vol 9 (2) ◽  
pp. 168781401769319 ◽  
Author(s):  
Yongjie Zhao ◽  
Ziqiang Zhang ◽  
Gang Cheng

Inverse rigid-body dynamic analysis for a 3UPS-PRU parallel robot are conducted in this research. The position, velocity, acceleration, jerk, and singularity are considered in the inverse kinematics analysis. The rigid-body dynamic model is developed by means of the principle of virtual work and the concept of link Jacobian matrices. The driving torque, driving power, and required output work of motors have been computed in the inverse rigid-body dynamics analysis. For the pre-defined trajectory, the required output work generated by the driving motor is achieved by numerical integration technique. The inverse kinematics and rigid-body dynamics have been investigated in an exhaustive decoupled way. The effects of the velocity of the moving platform on the components of the joint acceleration, joint jerk, driving torque, and driving power, which are related to the velocity of the moving platform, are investigated. There are linear relationships between the acceleration of the moving platform and the components of the joint acceleration, joint jerk, driving torque, and driving power, which are related to the acceleration of the moving platform. The total driving torques, the torques related to the acceleration, velocity, and gravity, the torques related to the moving platform, strut connected with the moving platform, strut connected with the base platform, and motor rotor-coupler are calculated. The total driving powers, the powers related to the acceleration component of torque, velocity component of torque, gravity component of torque, and the powers related to the moving platform, strut connected with the moving platform, strut connected with the base platform, and motor rotor-coupler are also achieved.


Author(s):  
Yue-Qing Yu ◽  
Peng Zhou ◽  
Qi-Ping Xu

The kinematic and dynamic analysis of compliant mechanisms is investigated comprehensively in this work. Based on the pseudo-rigid-body model, a new PR model is proposed to simulate both the lateral and axial deformations of flexural beams in compliant mechanisms. An optimization for the characteristic factors and a linear regression for the stiffness coefficients of PR pseudo-rigid-body model are presented. Compared with the 1R and 2R pseudo-rigid-body model, the advantage of the PR model is well illustrated. The dynamic modeling of flexible beams in compliant mechanisms is then developed based on the PR pseudo-rigid-body model. The dynamic equation of a PR pseudo-rigid-body dynamic model is derived and the dynamic responses are then presented. The kinematic and dynamic analysis of a compliant slider-crank mechanism is presented by the 1R, 2R and PR model, respectively. The effectiveness of pseudo-rigid-body models and the superiorities of the PR pseudo-rigid-body model and PR pseudo-rigid-body dynamic model are shown clearly in the numerical example.


Sign in / Sign up

Export Citation Format

Share Document