Reduced Order Modeling for Rapid Simulations of Blast and Rollover Events of a Ground Vehicle and its Occupants Using Rigid Body Dynamic Models

Author(s):  
Jaisankar Ramalingam ◽  
Sherri Chandra ◽  
Ravi Thyagarajan
Author(s):  
Yue-Qing Yu ◽  
Qian Li ◽  
Qi-Ping Xu

An intensive study on the dynamic modeling and analysis of compliant mechanisms is presented in this paper based on the pseudo-rigid-body model. The pseudo-rigid-body dynamic model with single degree-of-freedom is proposed at first and the dynamic equation of the 1R pseudo-rigid-body dynamic model for a flexural beam is presented briefly. The pseudo-rigid-body dynamic models with multi-degrees-of-freedom are then derived in detail. The dynamic equations of the 2R pseudo-rigid-body dynamic model and 3R pseudo-rigid-body dynamic model for the flexural beams are obtained using Lagrange equation. Numerical investigations on the natural frequencies and dynamic responses of the three pseudo-rigid-body dynamic models are made. The effectiveness and superiority of the pseudo-rigid-body dynamic model has been shown by comparing with the finite element analysis method. An example of a compliant parallel-guiding mechanism is presented to investigate the dynamic behavior of the mechanism using the 2R pseudo-rigid-body dynamic model.


2006 ◽  
Vol 49 (2) ◽  
pp. 16-24 ◽  
Author(s):  
Mark Bounds ◽  
George White

The Army has many rigid-body dynamic models of various vehicle platforms. The adequacy of these rigid-body models has been questioned. In an effort to gain insight into the significance of flexibility in the development of dynamic vehicle models, operating deflection shape (ODS) techniques were applied to acceleration data gathered from the body of a wheeled military vehicle. The data were analyzed in an effort to determine a specific frequency range over which the assumption of rigidity would be valid. For the particular platform examined in this study, the assumption of rigidity would apply up to approximately 14 Hz. Future efforts include using operational modal analysis (OMA) to further examine the problem.


2019 ◽  
Vol 142 (3) ◽  
Author(s):  
Vedant ◽  
James T. Allison

Abstract Movement in compliant mechanisms is achieved, at least in part, via deformable flexible members, rather than using articulating joints. These flexible members are traditionally modeled using finite element analysis (FEA)-based models. In this article, an alternative strategy for modeling compliant cantilever beams is developed with the objectives of reducing computational expense and providing accuracy with respect to design optimization solutions. The method involves approximating the response of a flexible beam with an n-link/m-joint pseudo-rigid-body dynamic model (PRBDM). Traditionally, static pseudo-rigid-body models (PRBMs) have shown an approximation of compliant elements using two or three revolute joints (2R/3R-PRBM). In this study, a more general nR-PRBDM model is developed. The first n resonant frequencies of the PRBDM are matched to exact or FEA solutions to approximate the response of the compliant system and compared with existing PRBMs. PRBDMs can be used for co-design studies of flexible structural members and are capable of modeling large deflections of compliant elements. We demonstrate PRBDMs that show dynamically accurate response for a random geometry cantilever beam by matching the steady-state and frequency response, with dynamical response accuracies up to 10% using a 5R-PRBDM.


Author(s):  
H. Alex Roberts ◽  
Mark R. Martin ◽  
Troy J. Canalichio

This paper documents experimental research determining the belt forces required to create visible and distinct markings on plastic automobile D-rings. The “D-Ring” is the loop through which the shoulder belt feeds before reaching the retractor. In the experimental configuration, ballast is attached to the belt webbing and dropped from a predetermined elevation. By varying the drop height the belt loading characteristics were also changed. Photographs document the resulting loading marks. A Mathematical Dynamic Modeler was used to calculate the Rigid Body Dynamic models to determine occupant belt loads from 5th and 50th percentile Hybrid III anthropomorphic test devices under various crash pulse conditions. These values were correlated to the experimental research. Conclusions are made relating D-ring markings to the delta-V of an automotive accident.


2000 ◽  
Vol 68 (1) ◽  
pp. 118-128 ◽  
Author(s):  
P. Song ◽  
P. Kraus ◽  
V. Kumar ◽  
P. Dupont

The use of Coulomb’s friction law with the principles of classical rigid-body dynamics introduces mathematical inconsistencies. Specifically, the forward dynamics problem can have no solutions or multiple solutions. In these situations, compliant contact models, while increasing the dimensionality of the state vector, can resolve these problems. The simplicity and efficiency of rigid-body models, however, provide strong motivation for their use during those portions of a simulation when the rigid-body solution is unique and stable. In this paper, we use singular perturbation analysis in conjunction with linear complementarity theory to establish conditions under which the solution predicted by the rigid-body dynamic model is stable. We employ a general model of contact compliance to derive stability criteria for planar mechanical systems. In particular, we show that for cases with one sliding contact, there is always at most one stable solution. Our approach is not directly applicable to transitions between rolling and sliding where the Coulomb friction law is discontinuous. To overcome this difficulty, we introduce a smooth nonlinear friction law, which approximates Coulomb friction. Such a friction model can also increase the efficiency of both rigid-body and compliant contact simulation. Numerical simulations for the different models and comparison with experimental results are also presented.


Author(s):  
Andi I. Mahyuddin ◽  
Ashok Midha

Abstract The camshaft of a cam-follower mechanism experiences a position-dependent moment due to the force exerted on the cam by the follower, causing the angular speed of the camshaft to fluctuate. In this work, a method to expediently predict the camshaft speed fluctuation is developed. The governing equation of motion is derived assuming that the cam-follower system is an ideal one wherein all members are treated as rigid. An existing closed-form numerical algorithm is used to obtain the steady-state rigid-body dynamic response of a machine system. The solution considers a velocity-dependent moment; specifically, a resisting moment is modeled as a velocity-squared damping. The effects of flywheel size and resisting moment on camshaft speed fluctuation are studied. The results compare favorably with those obtained from transient response using a direct integration scheme. The analytical result also shows excellent agreement with the camshaft speed variation of an experimental cam-follower mechanism. The steady-state rigid-body dynamic response obtained herein also serves as a first approximation to the input camshaft speed variation in the dynamic analysis of flexible cam-follower mechanisms in a subsequent research.


2015 ◽  
Vol 75 (2) ◽  
Author(s):  
Norhaida Mohd Suaib ◽  
Abdullah Bade ◽  
Dzulkifli Mohamad

This paper discusses on sphere encapsulated oriented-discrete orientation polytopes (therefore will be referred to as S-Dop) collision culling for multiple rigid body simulation. In order to improve performance of the whole simulation system, there are available options in sacrificing the accuracy over speed by using certain approximation techniques. The aim of this research is to achieve excellent performance through implementation of suitable culling technique, without jeopardizing the resulting behavior so that the simulation will still be physically plausible. The basic idea is to identify the highly probable pairs to collide and test the pair with a more accurate collision test in broad-phase collision detection, before the pair is passed to a more costly stage. Results from the experiments showed that there are a number of ways to implement the sphere encapsulated or-Dops (S-Dop) collision culling on a multiple rigid body simulation depending on the level of performance needed.  


Sign in / Sign up

Export Citation Format

Share Document