scholarly journals A Multi-State Constraint Kalman Filter for Vision-aided Inertial Navigation

Author(s):  
Anastasios I. Mourikis ◽  
Stergios I. Roumeliotis
Author(s):  
Arshiya Mahmoudi ◽  
Mahdi Mortazavi ◽  
Mehdi Sabzehparvar

For more than a decade, the multi-state constraint Kalman filter is used for visual-inertial navigation. Its advantages are the light-weight calculations, consistency, and similarity to the current mature GPS/INS Kalman filters. For using it in an airborne platform, an important deficiency exists. It diverges while the object stops moving. In this work, this deficiency is accounted for, by changing the state augmentation and measurement update policy from a time-based to horizontal travel-based scheme, and by reusing the oldest tracked point over and over. Besides the computational savings, it works infinitely with no extra errors in full-stops and with minor error build up in very low speeds.


2016 ◽  
Vol 13 (5) ◽  
pp. 172988141666485 ◽  
Author(s):  
Zhiwen Xian ◽  
Junxiang Lian ◽  
Mao Shan ◽  
Lilian Zhang ◽  
Xiaofeng He ◽  
...  

2012 ◽  
Vol 433-440 ◽  
pp. 2802-2807
Author(s):  
Ying Hong Han ◽  
Wan Chun Chen

For inertial navigation systems (INS) on moving base, transfer alignment is widely applied to initialize it. Three velocity plus attitude matching methods are compared. And Kalman filter is employed to evaluate the misalignment angle. Simulations under the same conditions show which scheme has excellent performance in precision and rapidness of estimations.


2012 ◽  
Vol 245 ◽  
pp. 323-329 ◽  
Author(s):  
Muhammad Ushaq ◽  
Jian Cheng Fang

Inertial navigation systems exhibit position errors that tend to grow with time in an unbounded mode. This degradation is due, in part, to errors in the initialization of the inertial measurement unit and inertial sensor imperfections such as accelerometer biases and gyroscope drifts. Mitigation to this growth and bounding the errors is to update the inertial navigation system periodically with external position (and/or velocity, attitude) fixes. The synergistic effect is obtained through external measurements updating the inertial navigation system using Kalman filter algorithm. It is a natural requirement that the inertial data and data from the external aids be combined in an optimal and efficient manner. In this paper an efficient method for integration of Strapdown Inertia Navigation System (SINS), Global Positioning System (GPS) and Doppler radar is presented using a centralized linear Kalman filter by treating vector measurements with uncorrelated errors as scalars. Two main advantages have been obtained with this improved scheme. First is the reduced computation time as the number of arithmetic computation required for processing a vector as successive scalar measurements is significantly less than the corresponding number of operations for vector measurement processing. Second advantage is the improved numerical accuracy as avoiding matrix inversion in the implementation of covariance equations improves the robustness of the covariance computations against round off errors.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Lijun Song ◽  
Zhongxing Duan ◽  
Bo He ◽  
Zhe Li

The centralized Kalman filter is always applied in the velocity and attitude matching of Transfer Alignment (TA). But the centralized Kalman has many disadvantages, such as large amount of calculation, poor real-time performance, and low reliability. In the paper, the federal Kalman filter (FKF) based on neural networks is used in the velocity and attitude matching of TA, the Kalman filter is adjusted by the neural networks in the two subfilters, the federal filter is used to fuse the information of the two subfilters, and the global suboptimal state estimation is obtained. The result of simulation shows that the federal Kalman filter based on neural networks is better in estimating the initial attitude misalignment angle of inertial navigation system (INS) when the system dynamic model and noise statistics characteristics of inertial navigation system are unclear, and the estimation error is smaller and the accuracy is higher.


Sign in / Sign up

Export Citation Format

Share Document