2017 ◽  
Vol 2017 ◽  
pp. 1-16
Author(s):  
Enrique Fernández-Rodicio ◽  
Víctor González-Pacheco ◽  
José Carlos Castillo ◽  
Álvaro Castro-González ◽  
María Malfaz ◽  
...  

Projectors have become a widespread tool to share information in Human-Robot Interaction with large groups of people in a comfortable way. Finding a suitable vertical surface becomes a problem when the projector changes positions when a mobile robot is looking for suitable surfaces to project. Two problems must be addressed to achieve a correct undistorted image: (i) finding the biggest suitable surface free from obstacles and (ii) adapting the output image to correct the distortion due to the angle between the robot and a nonorthogonal surface. We propose a RANSAC-based method that detects a vertical plane inside a point cloud. Then, inside this plane, we apply a rectangle-fitting algorithm over the region in which the projector can work. Finally, the algorithm checks the surface looking for imperfections and occlusions and transforms the original image using a homography matrix to display it over the area detected. The proposed solution can detect projection areas in real-time using a single Kinect camera, which makes it suitable for applications where a robot interacts with other people in unknown environments. Our Projection Surfaces Detector and the Image Correction module allow a mobile robot to find the right surface and display images without deformation, improving its ability to interact with people.


Robotics ◽  
2010 ◽  
Author(s):  
N. Elkmann ◽  
E. Schulenburg ◽  
M. Fritzsche

Robotica ◽  
2014 ◽  
Vol 33 (1) ◽  
pp. 1-18 ◽  
Author(s):  
Alberto Poncela ◽  
Leticia Gallardo-Estrella

SUMMARYVerbal communication is the most natural way of human–robot interaction. Such an interaction is usually achieved by means of a human-robot interface (HRI). In this paper, a HRI is presented to teleoperate a robotic platform via the user's voice. Hence, a speech recognition system is necessary. In this work, a user-dependent acoustic model for Spanish speakers has been developed to teleoperate a robot with a set of commands. Experimental results have been successful, both in terms of a high recognition rate and the navigation of the robot under the control of the user's voice.


Author(s):  
Yasutake Takahashi ◽  
◽  
Kyohei Yoshida ◽  
Fuminori Hibino ◽  
Yoichiro Maeda

Human-robot interaction requires intuitive interface that is not possible using devices, such as, the joystick or teaching pendant, which also require some trainings. Instruction by gesture is one example of an intuitive interfaces requiring no training, and pointing is one of the simplest gestures. We propose simple pointing recognition for a mobile robot having an upwarddirected camera system. The robot using this recognizes pointing and navigates through simple visual feedback control to where the user points. This paper explores the feasibility and utility of our proposal as shown by the results of a questionnaire on proposed and conventional interfaces.


2019 ◽  
Vol 40 (1) ◽  
pp. 143-154
Author(s):  
Chengguo Zong ◽  
Zhijian Ji ◽  
Haisheng Yu

Purpose This paper aims to provide a theoretical principle for the stability control of robot climbing stairs, autonomously based on human–robot interaction. Through this research, tracked mobile robots with human-robot interaction will be extensively used in rescue in disaster, exploration on planetary, fighting in battle, and searching for survivors in collapsed buildings. Design/methodology/approach This paper introduces the tracked mobile robot, based on human–robot interaction, and its six moving postures. The dynamic process of climbing stairs is analyzed, and the dynamic model of the robot is proposed. The dynamic stability criterion is derived when the tracked mobile robot contacts the stairs steps in one, two and more points. A further conduction of simulation on the relationship of the traction force and bearing force vs the velocity and acceleration in the three cases was carried out. Findings This paper explains that the tracked mobile robot, based on human–robot interaction, can stably climb stairs so long as the velocity and acceleration satisfy the dynamic stability criterion as noted above. In addition, the experiment tests the correctness of dynamic stability analysis when the tracked mobile robot contacts the stair steps in one, two or more points. Originality/value This paper provides the mechanical structure and working principle of the tracked mobile robot based on human–robot interaction and proposes an identification method of dynamic stability criterion when the robot contacts the stairs steps in one, two and more points.


Sign in / Sign up

Export Citation Format

Share Document