scholarly journals Bounding Worst-Case Data Cache Behavior by Analytically Deriving Cache Reference Patterns

Author(s):  
H. Ramaprasad ◽  
F. Mueller
Keyword(s):  
Author(s):  
Xiuqin Chu ◽  
Na Li ◽  
Jun Wang ◽  
Yuhuan Luo ◽  
Feng Wu ◽  
...  
Keyword(s):  

Electronics ◽  
2018 ◽  
Vol 7 (10) ◽  
pp. 224 ◽  
Author(s):  
Zhensen Tang ◽  
Yao Wang ◽  
Yaqing Chi ◽  
Liang Fang

In this paper, the dependence of sensing currents on various device parameters is comprehensively studied by simulating the complete crossbar array rather than its equivalent analytical model. The worst-case scenario for read operation is strictly analyzed and defined in terms of selected location and data pattern, respectively, based on the effect of parasitic sneak paths and interconnection resistance. It is shown that the worst-case data pattern depends on the trade-off between the shunting effect of the parasitic sneak paths and the current injection effect of the parasitic sneak leakage, thus requiring specific analysis in practical simulations. In dealing with that, we propose a concept of the threshold array size incorporating the trade-off to define the parameter-dependent worst-case data pattern. This figure-of-merit provides guidelines for the worst-case scenario analysis of the crossbar array read operations.


Risk Analysis ◽  
2003 ◽  
Vol 23 (5) ◽  
pp. 865-881 ◽  
Author(s):  
Paul R. Kleindorfer ◽  
James C. Belke ◽  
Michael R. Elliott ◽  
Kiwan Lee ◽  
Robert A. Lowe ◽  
...  

Author(s):  
Pooya Davoodi ◽  
Gonzalo Navarro ◽  
Rajeev Raman ◽  
S. Srinivasa Rao

We consider the problem of encoding range minimum queries (RMQs): given an array A [1.. n ] of distinct totally ordered values, to pre-process A and create a data structure that can answer the query RMQ( i , j ), which returns the index containing the smallest element in A [ i .. j ], without access to the array A at query time. We give a data structure whose space usage is 2 n + o ( n ) bits, which is asymptotically optimal for worst-case data, and answers RMQs in O (1) worst-case time. This matches the previous result of Fischer and Heun, but is obtained in a more natural way. Furthermore, our result can encode the RMQs of a random array A in 1.919 n + o ( n ) bits in expectation, which is not known to hold for Fischer and Heun’s result. We then generalize our result to the encoding range top-2 query (RT2Q) problem, which is like the encoding RMQ problem except that the query RT2Q( i , j ) returns the indices of both the smallest and second smallest elements of A [ i .. j ]. We introduce a data structure using 3.272 n + o ( n ) bits that answers RT2Qs in constant time, and also give lower bounds on the effective entropy of the RT2Q problem.


Sign in / Sign up

Export Citation Format

Share Document