Hyperspectral image classification using spatial spectral features and machine learning approach

Author(s):  
Jignesh K Dhandhalya ◽  
S K Parmar
2019 ◽  
Vol 11 (16) ◽  
pp. 1954 ◽  
Author(s):  
Yangjie Sun ◽  
Zhongliang Fu ◽  
Liang Fan

Today, more and more deep learning frameworks are being applied to hyperspectral image classification tasks and have achieved great results. However, such approaches are still hampered by long training times. Traditional spectral–spatial hyperspectral image classification only utilizes spectral features at the pixel level, without considering the correlation between local spectral signatures. Our article has tested a novel hyperspectral image classification pattern, using random-patches convolution and local covariance (RPCC). The RPCC is an effective two-branch method that, on the one hand, obtains a specified number of convolution kernels from the image space through a random strategy and, on the other hand, constructs a covariance matrix between different spectral bands by clustering local neighboring pixels. In our method, the spatial features come from multi-scale and multi-level convolutional layers. The spectral features represent the correlations between different bands. We use the support vector machine as well as spectral and spatial fusion matrices to obtain classification results. Through experiments, RPCC is tested with five excellent methods on three public data-sets. Quantitative and qualitative evaluation indicators indicate that the accuracy of our RPCC method can match or exceed the current state-of-the-art methods.


2021 ◽  
Vol 13 (18) ◽  
pp. 3590
Author(s):  
Tianyu Zhang ◽  
Cuiping Shi ◽  
Diling Liao ◽  
Liguo Wang

Convolutional neural networks (CNNs) have exhibited excellent performance in hyperspectral image classification. However, due to the lack of labeled hyperspectral data, it is difficult to achieve high classification accuracy of hyperspectral images with fewer training samples. In addition, although some deep learning techniques have been used in hyperspectral image classification, due to the abundant information of hyperspectral images, the problem of insufficient spatial spectral feature extraction still exists. To address the aforementioned issues, a spectral–spatial attention fusion with a deformable convolution residual network (SSAF-DCR) is proposed for hyperspectral image classification. The proposed network is composed of three parts, and each part is connected sequentially to extract features. In the first part, a dense spectral block is utilized to reuse spectral features as much as possible, and a spectral attention block that can refine and optimize the spectral features follows. In the second part, spatial features are extracted and selected by a dense spatial block and attention block, respectively. Then, the results of the first two parts are fused and sent to the third part, and deep spatial features are extracted by the DCR block. The above three parts realize the effective extraction of spectral–spatial features, and the experimental results for four commonly used hyperspectral datasets demonstrate that the proposed SSAF-DCR method is superior to some state-of-the-art methods with very few training samples.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Houari Youcef Moudjib ◽  
Duan Haibin ◽  
Baochang Zhang ◽  
Mohammed Salah Ahmed Ghaleb

Purpose Hyperspectral imaging (HSI) systems are becoming potent technologies for computer vision tasks due to the rich information they uncover, where each substance exhibits a distinct spectral distribution. Although the high spectral dimensionality of the data empowers feature learning, the joint spatial–spectral features have not been well explored yet. Gabor convolutional networks (GCNs) incorporate Gabor filters into a deep convolutional neural network (CNN) to extract discriminative features of different orientations and frequencies. To the best if the authors’ knowledge, this paper introduces the exploitation of GCNs for hyperspectral image classification (HSI-GCN) for the first time. HSI-GCN is able to extract deep joint spatial–spectral features more rapidly and accurately despite the shortage of training samples. The authors thoroughly evaluate the effectiveness of used method on different hyperspectral data sets, where promising results and high classification accuracy have been achieved compared to the previously proposed CNN-based and Gabor-based methods. Design/methodology/approach The authors have implemented the new algorithm of Gabor convolution network on the hyperspectral images for classification purposes. Findings Implementing the new GCN has shown unexpectable results with an excellent classification accuracy. Originality/value To the best of the authors’ knowledge, this work is the first one that implements this approach.


Sign in / Sign up

Export Citation Format

Share Document