Affective gaming in real-time emotion detection and Smart Computing music emotion recognition: Implementation approach with electroencephalogram

Author(s):  
Pradeep Kalansooriya ◽  
G. A. D Ganepola ◽  
T. S. Thalagala
Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1289
Author(s):  
Navjot Rathour ◽  
Sultan S. Alshamrani ◽  
Rajesh Singh ◽  
Anita Gehlot ◽  
Mamoon Rashid ◽  
...  

Facial emotion recognition (FER) is the procedure of identifying human emotions from facial expressions. It is often difficult to identify the stress and anxiety levels of an individual through the visuals captured from computer vision. However, the technology enhancements on the Internet of Medical Things (IoMT) have yielded impressive results from gathering various forms of emotional and physical health-related data. The novel deep learning (DL) algorithms are allowing to perform application in a resource-constrained edge environment, encouraging data from IoMT devices to be processed locally at the edge. This article presents an IoMT based facial emotion detection and recognition system that has been implemented in real-time by utilizing a small, powerful, and resource-constrained device known as Raspberry-Pi with the assistance of deep convolution neural networks. For this purpose, we have conducted one empirical study on the facial emotions of human beings along with the emotional state of human beings using physiological sensors. It then proposes a model for the detection of emotions in real-time on a resource-constrained device, i.e., Raspberry-Pi, along with a co-processor, i.e., Intel Movidius NCS2. The facial emotion detection test accuracy ranged from 56% to 73% using various models, and the accuracy has become 73% performed very well with the FER 2013 dataset in comparison to the state of art results mentioned as 64% maximum. A t-test is performed for extracting the significant difference in systolic, diastolic blood pressure, and the heart rate of an individual watching three different subjects (angry, happy, and neutral).


2021 ◽  
Vol 1827 (1) ◽  
pp. 012130
Author(s):  
Qi Li ◽  
Yun Qing Liu ◽  
Yue Qi Peng ◽  
Cong Liu ◽  
Jun Shi ◽  
...  

Author(s):  
Weixi Gu ◽  
Yue Zhang ◽  
Fei Ma ◽  
Khalid Mosalam ◽  
Lin Zhang ◽  
...  
Keyword(s):  

2021 ◽  
Vol 11 (22) ◽  
pp. 10540
Author(s):  
Navjot Rathour ◽  
Zeba Khanam ◽  
Anita Gehlot ◽  
Rajesh Singh ◽  
Mamoon Rashid ◽  
...  

There is a significant interest in facial emotion recognition in the fields of human–computer interaction and social sciences. With the advancements in artificial intelligence (AI), the field of human behavioral prediction and analysis, especially human emotion, has evolved significantly. The most standard methods of emotion recognition are currently being used in models deployed in remote servers. We believe the reduction in the distance between the input device and the server model can lead us to better efficiency and effectiveness in real life applications. For the same purpose, computational methodologies such as edge computing can be beneficial. It can also encourage time-critical applications that can be implemented in sensitive fields. In this study, we propose a Raspberry-Pi based standalone edge device that can detect real-time facial emotions. Although this edge device can be used in variety of applications where human facial emotions play an important role, this article is mainly crafted using a dataset of employees working in organizations. A Raspberry-Pi-based standalone edge device has been implemented using the Mini-Xception Deep Network because of its computational efficiency in a shorter time compared to other networks. This device has achieved 100% accuracy for detecting faces in real time with 68% accuracy, i.e., higher than the accuracy mentioned in the state-of-the-art with the FER 2013 dataset. Future work will implement a deep network on Raspberry-Pi with an Intel Movidious neural compute stick to reduce the processing time and achieve quick real time implementation of the facial emotion recognition system.


2022 ◽  
Vol 12 (2) ◽  
pp. 807
Author(s):  
Huafei Xiao ◽  
Wenbo Li ◽  
Guanzhong Zeng ◽  
Yingzhang Wu ◽  
Jiyong Xue ◽  
...  

With the development of intelligent automotive human-machine systems, driver emotion detection and recognition has become an emerging research topic. Facial expression-based emotion recognition approaches have achieved outstanding results on laboratory-controlled data. However, these studies cannot represent the environment of real driving situations. In order to address this, this paper proposes a facial expression-based on-road driver emotion recognition network called FERDERnet. This method divides the on-road driver facial expression recognition task into three modules: a face detection module that detects the driver’s face, an augmentation-based resampling module that performs data augmentation and resampling, and an emotion recognition module that adopts a deep convolutional neural network pre-trained on FER and CK+ datasets and then fine-tuned as a backbone for driver emotion recognition. This method adopts five different backbone networks as well as an ensemble method. Furthermore, to evaluate the proposed method, this paper collected an on-road driver facial expression dataset, which contains various road scenarios and the corresponding driver’s facial expression during the driving task. Experiments were performed on the on-road driver facial expression dataset that this paper collected. Based on efficiency and accuracy, the proposed FERDERnet with Xception backbone was effective in identifying on-road driver facial expressions and obtained superior performance compared to the baseline networks and some state-of-the-art networks.


Sign in / Sign up

Export Citation Format

Share Document