scholarly journals On the Impact of Applying Machine Learning in the Decision-Making of Self-Adaptive Systems

Author(s):  
Omid Gheibi ◽  
Danny Weyns ◽  
Federico Quin
2019 ◽  
Vol 33 (2) ◽  
pp. 31-50 ◽  
Author(s):  
Ajay Agrawal ◽  
Joshua S. Gans ◽  
Avi Goldfarb

Recent advances in artificial intelligence are primarily driven by machine learning, a prediction technology. Prediction is useful because it is an input into decision-making. In order to appreciate the impact of artificial intelligence on jobs, it is important to understand the relative roles of prediction and decision tasks. We describe and provide examples of how artificial intelligence will affect labor, emphasizing differences between when the automation of prediction leads to automating decisions versus enhancing decision-making by humans.


2021 ◽  
Vol 12 (04) ◽  
pp. 808-815
Author(s):  
Lin Lawrence Guo ◽  
Stephen R. Pfohl ◽  
Jason Fries ◽  
Jose Posada ◽  
Scott Lanyon Fleming ◽  
...  

Abstract Objective The change in performance of machine learning models over time as a result of temporal dataset shift is a barrier to machine learning-derived models facilitating decision-making in clinical practice. Our aim was to describe technical procedures used to preserve the performance of machine learning models in the presence of temporal dataset shifts. Methods Studies were included if they were fully published articles that used machine learning and implemented a procedure to mitigate the effects of temporal dataset shift in a clinical setting. We described how dataset shift was measured, the procedures used to preserve model performance, and their effects. Results Of 4,457 potentially relevant publications identified, 15 were included. The impact of temporal dataset shift was primarily quantified using changes, usually deterioration, in calibration or discrimination. Calibration deterioration was more common (n = 11) than discrimination deterioration (n = 3). Mitigation strategies were categorized as model level or feature level. Model-level approaches (n = 15) were more common than feature-level approaches (n = 2), with the most common approaches being model refitting (n = 12), probability calibration (n = 7), model updating (n = 6), and model selection (n = 6). In general, all mitigation strategies were successful at preserving calibration but not uniformly successful in preserving discrimination. Conclusion There was limited research in preserving the performance of machine learning models in the presence of temporal dataset shift in clinical medicine. Future research could focus on the impact of dataset shift on clinical decision making, benchmark the mitigation strategies on a wider range of datasets and tasks, and identify optimal strategies for specific settings.


Sign in / Sign up

Export Citation Format

Share Document