Bluetooth Beacon Based Accurate Indoor Positioning Using Machine Learning

Author(s):  
Kotrotsios Konstantinos ◽  
Theofanis Orphanoudakis
2019 ◽  
Vol 9 (6) ◽  
pp. 1048 ◽  
Author(s):  
Huy Tran ◽  
Cheolkeun Ha

Recently, indoor positioning systems have attracted a great deal of research attention, as they have a variety of applications in the fields of science and industry. In this study, we propose an innovative and easily implemented solution for indoor positioning. The solution is based on an indoor visible light positioning system and dual-function machine learning (ML) algorithms. Our solution increases positioning accuracy under the negative effect of multipath reflections and decreases the computational time for ML algorithms. Initially, we perform a noise reduction process to eliminate low-intensity reflective signals and minimize noise. Then, we divide the floor of the room into two separate areas using the ML classification function. This significantly reduces the computational time and partially improves the positioning accuracy of our system. Finally, the regression function of those ML algorithms is applied to predict the location of the optical receiver. By using extensive computer simulations, we have demonstrated that the execution time required by certain dual-function algorithms to determine indoor positioning is decreased after area division and noise reduction have been applied. In the best case, the proposed solution took 78.26% less time and provided a 52.55% improvement in positioning accuracy.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 214945-214965
Author(s):  
Ahasanun Nessa ◽  
Bhagawat Adhikari ◽  
Fatima Hussain ◽  
Xavier N. Fernando

2019 ◽  
Vol 9 (18) ◽  
pp. 3665 ◽  
Author(s):  
Ahmet Çağdaş Seçkin ◽  
Aysun Coşkun

Wi-Fi-based indoor positioning offers significant opportunities for numerous applications. Examining the Wi-Fi positioning systems, it was observed that hundreds of variables were used even when variable reduction was applied. This reveals a structure that is difficult to repeat and is far from producing a common solution for real-life applications. It aims to create a common and standardized dataset for indoor positioning and localization and present a system that can perform estimations using this dataset. To that end, machine learning (ML) methods are compared and the results of successful methods with hierarchical inclusion are then investigated. Further, new features are generated according to the measurement point obtained from the dataset. Subsequently, learning models are selected according to the performance metrics for the estimation of location and position. These learning models are then fused hierarchically using deductive reasoning. Using the proposed method, estimation of location and position has proved to be more successful by using fewer variables than the current studies. This paper, thus, identifies a lack of applicability present in the research community and solves it using the proposed method. It suggests that the proposed method results in a significant improvement for the estimation of floor and longitude.


2014 ◽  
Vol 931-932 ◽  
pp. 942-946
Author(s):  
Shutchon Premchaisawatt ◽  
Nararat Ruangchaijatupon

This research aims to purpose the new method, which is called Error Flag Framework (EFF) to enhance accuracy fingerprinting indoor positioning of wireless device by using machine learning algorithms. EFF is compared with well-known machine learning classifiers; i.e. Decision Tree, Naive Bayes, and Artificial Neural Networks, by exploiting the signal strength from limited information. The performance comparison is done in terms of accuracy of classification of positions, precision of distance classified, and effects of classification of positions on results from quantity of learning data. The result of this study can suggest that EFF can increase performance for indoor positioning of every well-known classifier, especially when the quantity of learning data is large enough. Hence, EFF is the alternate way for implementing in positioning software by using the fingerprinting method.


Sign in / Sign up

Export Citation Format

Share Document