A Comparison of Voltage Stability Indices for Critical Node Identification in a Power System

Author(s):  
Isaiah G. Adebayo ◽  
Yanxia Sun
2019 ◽  
Vol 49 (4) ◽  
pp. 225-232
Author(s):  
Jaime Dwaigth Pinzon Casallas ◽  
D. G. Colomé

This paper presents a novel methodology to identify critical contingencies that produce short-term voltage stability problems (STVS). The proposed methodology classifies the state of the pow-er system for each contingency, assessing the voltage stability of the post-contingency dynamic response from the calculation of the maximal Lyapunov expo-nent (MLE) and dynamic voltage indices at each bus and the whole system. In order to determine the crit-ical contingencies, the values of the indices and the results of the classification of the post-contingency state are statistically analysed. The methodology is tested in the New England 39-bus system, obtaining satisfactory results in relation to the identification not only of the most critical contingencies but also of vulnerable buses to voltage instability. New contri-butions of this work are the contingency classifica-tion methodology, the algorithm for calculating dy-namic indices and the method of classification of the operating state as a function of the STVS problem magnitude.


2021 ◽  
Vol 28 (1) ◽  
pp. 98-112
Author(s):  
Mohammed Ibrahim ◽  
Abdulsattar Jasim

Voltage collapse in the power system occurs as a result of voltage instability, thus which lead to a blackout, and this is a constant concern for network workers and customers alike. In this paper, voltage collapse is studied using two approved methods: the modal analysis method and voltage stability indices. In the modal analysis method, the eigenvalues were calculated for all the load buses, through which it is possible to know the stability of the power system, The participation factor was also calculated for the load buses, which enables us to know the weakest buses in the system. As for the Voltage stability Indices method, two important indices were calculated, which are: Fast Voltage Stability Index (FVSI) and Line stability index (Lmn). These two indices give a good visualization of the stability of the system and the knowledge of the weakest buses, as well as the Maximum load-ability of the load buses. The above mentioned two methods were applied using software code using MATLAB \ R2018a program to the IEEE 30-Bus test system. In the modal analysis, the buses which have the maximum participation factor are 26, 29, and 30 this indicates that they are the weakest in the system. as well as in the voltage stability indices. These buses have the lowest maximum load ability which demonstrates the possibility of using both methods or one of them to study the voltage collapse.


2015 ◽  
Vol 118 ◽  
pp. 1127-1136 ◽  
Author(s):  
H.H. Goh ◽  
Q.S. Chua ◽  
S.W. Lee ◽  
B.C. Kok ◽  
K.C. Goh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document