Optimum Channel Selection of Dual Radar for Respiration Detection - A Time Domain Approach

Author(s):  
Smriti Rani ◽  
Anwesha Khasnobish ◽  
Raj Rakshit ◽  
Andrew Gigie ◽  
Tapas Chakravarty
2021 ◽  
Vol 15 ◽  
Author(s):  
Tianyu Liu ◽  
Zhixiong Xu ◽  
Lei Cao ◽  
Guowei Tan

Hybrid-modality brain-computer Interfaces (BCIs), which combine motor imagery (MI) bio-signals and steady-state visual evoked potentials (SSVEPs), has attracted wide attention in the research field of neural engineering. The number of channels should be as small as possible for real-life applications. However, most of recent works about channel selection only focus on either the performance of classification task or the effectiveness of device control. Few works conduct channel selection for MI and SSVEP classification tasks simultaneously. In this paper, a multitasking-based multiobjective evolutionary algorithm (EMMOA) was proposed to select appropriate channels for these two classification tasks at the same time. Moreover, a two-stage framework was introduced to balance the number of selected channels and the classification accuracy in the proposed algorithm. The experimental results verified the feasibility of multiobjective optimization methodology for channel selection of hybrid BCI tasks.


1988 ◽  
Vol 110 (1) ◽  
pp. 43-47 ◽  
Author(s):  
J. N. Brekke ◽  
T. N. Gardner

The avoidance of “slack” tethers is one of the factors which may establish the required tether pretension in a tension leg platform (TLP) design. Selection of an appropriate safety factor on loss of tension depends on how severe the consequences may be. It is sometimes argued that if tethers go slack, the result may be excessive platform pitch or roll motions, tether buckling, or “snap” or “snatch” loading of the tether. The results reported here show that a four-legged TLP would not be susceptible to larger angular motions until two adjacent legs lose tension simultaneously. Even then, this analysis shows that a brief period of tether tension loss (during the passage of a large wave trough) does not lead to excessive platform motion. Similarly, momentary tension loss does not cause large bending stress in the tether or significant tension amplification as the tether undergoes retensioning. This paper presents TLP platform and tether response analysis results for a representative deepwater Gulf of Mexico TLP with large-diameter, self-buoyant tethers. The time-domain, dynamic computer analysis included nonlinear effects and platform/tether coupling.


2019 ◽  
Author(s):  
Olivier Coopmann ◽  
Vincent Guidard ◽  
Béatrice Josse ◽  
Virginie Marécal ◽  
Nadia Fourrié

Abstract. The Infrared Atmospheric Sounding Interferometer (IASI) onboard the Metop satellites provides 8461 channels in the infrared spectrum, covering the spectral interval 645–2760 cm−1 at a resolution of 0.5 cm−1. The high volume of data observation resulting from IASI presents many challenges. In current Numerical Weather Prediction (NWP) models, assimilating all channels is not feasible, due to data transmission, data storage and significant computational costs. One of the methods for reducing the data volume is the channel selection. Many NWP centres use a subset of 314 IASI channels including 15 ozone-sensitive channels. However, this channel selection has been carried out assuming uncorrelated observation errors. In addition, these ozone-sensitive channels have been selected only for ozone information. The objective of this study is to carry out a new selection of IASI ozone-sensitive channels from the full spectrum over a spectral range of 1000–1070 cm−1, in a direct radiance assimilation framework. This selection is done with a full observation error covariance matrix to take into account cross-channel error correlations. A sensitivity method based on the channel spectral sensitivity to variables and a statistical approach based on the Degrees of Freedom for Signal (DFS) have been chosen. To be representative of atmospheric variability, 345 profiles from around the world over a one-year period were selected. The new selection, is evaluated in a One-Dimensional Variational (1D-Var) analyses framework. This selection highlights a new set of 15 IASI ozone-sensitive channels. The results are very encouraging since by adding these 15 channels to 122 operational channels, temperature and humidity analyses are improved by 13.8 % and 20.9 % respectively. Obviously, these 15 channels significantly improve ozone analyses. In addition to considering inter-channel observation error correlations, the channel selection method uses a robust background error covariance matrix that takes into account temperature, humidity and ozone errors using a lagged forecast method over a one-year period. The new selection of IASI ozone-sensitive channels will be soon used in the global 4D-Var ARPEGE (Action de Recherche Petite Echelle Grande Echelle) data assimilation system.


Sign in / Sign up

Export Citation Format

Share Document