Errors Estimation Models for Embedded Software Development Projects

Author(s):  
Kazunori Iwata ◽  
Toyoshiro Nakashima ◽  
Yoshiyuki Anan ◽  
Naohiro Ishii
2022 ◽  
pp. 1652-1665
Author(s):  
Kazunori Iwata ◽  
Toyoshiro Nakashima ◽  
Yoshiyuki Anan ◽  
Naohiro Ishii

This paper discusses the effect of classification in estimating the amount of effort (in man-days) associated with code development. Estimating the effort requirements for new software projects is especially important. As outliers are harmful to the estimation, they are excluded from many estimation models. However, such outliers can be identified in practice once the projects are completed, and so they should not be excluded during the creation of models and when estimating the required effort. This paper presents classifications for embedded software development projects using an artificial neural network (ANN) and a support vector machine. After defining the classifications, effort estimation models are created for each class using linear regression, an ANN, and a form of support vector regression. Evaluation experiments are carried out to compare the estimation accuracy of the model both with and without the classifications using 10-fold cross-validation. In addition, the Games-Howell test with one-way analysis of variance is performed to consider statistically significant evidence.


2017 ◽  
Vol 5 (4) ◽  
pp. 19-32 ◽  
Author(s):  
Kazunori Iwata ◽  
Toyoshiro Nakashima ◽  
Yoshiyuki Anan ◽  
Naohiro Ishii

This paper discusses the effect of classification in estimating the amount of effort (in man-days) associated with code development. Estimating the effort requirements for new software projects is especially important. As outliers are harmful to the estimation, they are excluded from many estimation models. However, such outliers can be identified in practice once the projects are completed, and so they should not be excluded during the creation of models and when estimating the required effort. This paper presents classifications for embedded software development projects using an artificial neural network (ANN) and a support vector machine. After defining the classifications, effort estimation models are created for each class using linear regression, an ANN, and a form of support vector regression. Evaluation experiments are carried out to compare the estimation accuracy of the model both with and without the classifications using 10-fold cross-validation. In addition, the Games-Howell test with one-way analysis of variance is performed to consider statistically significant evidence.


2014 ◽  
Vol 2 (3) ◽  
pp. 40-50 ◽  
Author(s):  
Kazunori Iwata ◽  
Toyoshiro Nakasima ◽  
Yoshiyuki Anan ◽  
Naohiro Ishii

Previous investigation focused on the prediction of total and errors for embedded software development projects using an artificial neural network (ANN). However, methods using ANNs have reached their improvement limits, since an appropriate value is estimated using what is known as point estimation in statistics. This paper proposes a method for predicting the number of errors for embedded software development projects using interval estimation provided by a support vector machine and ANN.


Sign in / Sign up

Export Citation Format

Share Document