Lower bounds on the time of probabilistic on-line simulations

Author(s):  
Ramamohan Paturi ◽  
Janos Simon
Keyword(s):  
2006 ◽  
Vol 36 (2) ◽  
pp. 354-393 ◽  
Author(s):  
Yair Bartal ◽  
Amos Fiat ◽  
Stefano Leonardi

1984 ◽  
Vol 60 (1-3) ◽  
pp. 1-11 ◽  
Author(s):  
Pavol Dūrī ◽  
Zvi Galil ◽  
Wolfgang Paul ◽  
Ruediger Reischuk
Keyword(s):  

2001 ◽  
Vol 11 (04) ◽  
pp. 401-421 ◽  
Author(s):  
ALEJANDRO LÓPEZ-ORTIZ ◽  
SVEN SCHUIERER

We present lower bounds for on-line searching problems in two special classes of simple polygons called streets and generalized streets. In streets we assume that the location of the target is known to the robot in advance and prove a lower bound of [Formula: see text] on the competitive ratio of any deterministic search strategy—which can be shown to be tight. For generalized streets we show that if the location of the target is not known, then there is a class of orthogonal generalized streets for which the competitive ratio of any search strategy is at least [Formula: see text] in the L2-metric—again matching the competitive ratio of the best known algorithm. We also show that if the location of the target is known, then the competitive ratio for searching in generalized streets in the L1-metric is at least 9 which is tight as well. The former result is based on a lower bound on the average competitive ratio of searching on the real line if an upper bound of D to the target is given. We show that in this case the average competitive ratio is at least 9-O(1/ log D).


Author(s):  
Grzegorz Gutowski ◽  
Jakub Kozik ◽  
Piotr Micek ◽  
Xuding Zhu

1998 ◽  
Vol 5 (11) ◽  
Author(s):  
Gudmund Skovbjerg Frandsen ◽  
Johan P. Hansen ◽  
Peter Bro Miltersen

We consider dynamic evaluation of algebraic functions (matrix multiplication, determinant, convolution, Fourier transform, etc.) in the model of Reif and Tate; i.e., if f(x1, . . . , xn) = (y1, . . . , ym) is an algebraic problem, we consider serving on-line requests of the form "change input xi to value v" or "what is the value of output yi?". We present techniques for showing lower bounds on the worst case time complexity per operation for such problems. The first gives lower bounds in a wide range of rather powerful models (for instance history dependent<br />algebraic computation trees over any infinite subset of a field, the integer RAM, and the generalized real RAM model of Ben-Amram and Galil). Using this technique, we show optimal  Omega(n) bounds for dynamic matrix-vector product, dynamic matrix multiplication and dynamic discriminant and an <br />Omega(sqrt(n)) lower bound for dynamic polynomial multiplication (convolution), providing a good match with Reif and<br />Tate's O(sqrt(n log n)) upper bound. We also show linear lower bounds for dynamic determinant, matrix adjoint and matrix inverse and an Omega(sqrt(n)) lower bound for the elementary symmetric functions. The second technique is the communication complexity technique of Miltersen, Nisan, Safra, and Wigderson which we apply to the setting<br />of dynamic algebraic problems, obtaining similar lower bounds in the word RAM model. The third technique gives lower bounds in the weaker straight line program model. Using this technique, we show an ((log n)2= log log n) lower bound for dynamic discrete Fourier transform. Technical ingredients of our techniques are the incompressibility technique of Ben-Amram and Galil and the lower bound for depth-two superconcentrators of Radhakrishnan and Ta-Shma. The incompressibility technique is extended to arithmetic computation in arbitrary fields.


2007 ◽  
Vol 155 (2) ◽  
pp. 119-136 ◽  
Author(s):  
Ioannis Caragiannis ◽  
Aleksei V. Fishkin ◽  
Christos Kaklamanis ◽  
Evi Papaioannou

Sign in / Sign up

Export Citation Format

Share Document