A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed

Author(s):  
A.I. Barvinok
10.29007/v68w ◽  
2018 ◽  
Author(s):  
Ying Zhu ◽  
Mirek Truszczynski

We study the problem of learning the importance of preferences in preference profiles in two important cases: when individual preferences are aggregated by the ranked Pareto rule, and when they are aggregated by positional scoring rules. For the ranked Pareto rule, we provide a polynomial-time algorithm that finds a ranking of preferences such that the ranked profile correctly decides all the examples, whenever such a ranking exists. We also show that the problem to learn a ranking maximizing the number of correctly decided examples (also under the ranked Pareto rule) is NP-hard. We obtain similar results for the case of weighted profiles when positional scoring rules are used for aggregation.


2002 ◽  
Vol 50 (8) ◽  
pp. 1935-1941 ◽  
Author(s):  
Dongning Li ◽  
Yong Ching Lim ◽  
Yong Lian ◽  
Jianjian Song

Sign in / Sign up

Export Citation Format

Share Document