Real-Time Gender Detection in the Wild Using Deep Neural Networks

Author(s):  
Luis Felipe de Araujo Zeni ◽  
Claudio Rosito Jung
Author(s):  
Dimitrios Boursinos ◽  
Xenofon Koutsoukos

AbstractMachine learning components such as deep neural networks are used extensively in cyber-physical systems (CPS). However, such components may introduce new types of hazards that can have disastrous consequences and need to be addressed for engineering trustworthy systems. Although deep neural networks offer advanced capabilities, they must be complemented by engineering methods and practices that allow effective integration in CPS. In this paper, we proposed an approach for assurance monitoring of learning-enabled CPS based on the conformal prediction framework. In order to allow real-time assurance monitoring, the approach employs distance learning to transform high-dimensional inputs into lower size embedding representations. By leveraging conformal prediction, the approach provides well-calibrated confidence and ensures a bounded small error rate while limiting the number of inputs for which an accurate prediction cannot be made. We demonstrate the approach using three datasets of mobile robot following a wall, speaker recognition, and traffic sign recognition. The experimental results demonstrate that the error rates are well-calibrated while the number of alarms is very small. Furthermore, the method is computationally efficient and allows real-time assurance monitoring of CPS.


Author(s):  
A. Rigoni Garola ◽  
R. Cavazzana ◽  
M. Gobbin ◽  
R.S. Delogu ◽  
G. Manduchi ◽  
...  

2022 ◽  
Vol 192 ◽  
pp. 106586
Author(s):  
Yanchao Zhang ◽  
Jiya Yu ◽  
Yang Chen ◽  
Wen Yang ◽  
Wenbo Zhang ◽  
...  

Author(s):  
Qiyu Wan ◽  
Yuchen Jin ◽  
Xuqing Wu ◽  
Jiefu Chen ◽  
Xin Fu

Author(s):  
Derya Soydaner

In recent years, we have witnessed the rise of deep learning. Deep neural networks have proved their success in many areas. However, the optimization of these networks has become more difficult as neural networks going deeper and datasets becoming bigger. Therefore, more advanced optimization algorithms have been proposed over the past years. In this study, widely used optimization algorithms for deep learning are examined in detail. To this end, these algorithms called adaptive gradient methods are implemented for both supervised and unsupervised tasks. The behavior of the algorithms during training and results on four image datasets, namely, MNIST, CIFAR-10, Kaggle Flowers and Labeled Faces in the Wild are compared by pointing out their differences against basic optimization algorithms.


Sign in / Sign up

Export Citation Format

Share Document