No-reference image blur assessment based on local total variation

Author(s):  
Wenhua Wang ◽  
Zhiming Wang
Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 591
Author(s):  
Manasavee Lohvithee ◽  
Wenjuan Sun ◽  
Stephane Chretien ◽  
Manuchehr Soleimani

In this paper, a computer-aided training method for hyperparameter selection of limited data X-ray computed tomography (XCT) reconstruction was proposed. The proposed method employed the ant colony optimisation (ACO) approach to assist in hyperparameter selection for the adaptive-weighted projection-controlled steepest descent (AwPCSD) algorithm, which is a total-variation (TV) based regularisation algorithm. During the implementation, there was a colony of artificial ants that swarm through the AwPCSD algorithm. Each ant chose a set of hyperparameters required for its iterative CT reconstruction and the correlation coefficient (CC) score was given for reconstructed images compared to the reference image. A colony of ants in one generation left a pheromone through its chosen path representing a choice of hyperparameters. Higher score means stronger pheromones/probabilities to attract more ants in the next generations. At the end of the implementation, the hyperparameter configuration with the highest score was chosen as an optimal set of hyperparameters. In the experimental results section, the reconstruction using hyperparameters from the proposed method was compared with results from three other cases: the conjugate gradient least square (CGLS), the AwPCSD algorithm using the set of arbitrary hyperparameters and the cross-validation method.The experiments showed that the results from the proposed method were superior to those of the CGLS algorithm and the AwPCSD algorithm using the set of arbitrary hyperparameters. Although the results of the ACO algorithm were slightly inferior to those of the cross-validation method as measured by the quantitative metrics, the ACO algorithm was over 10 times faster than cross—Validation. The optimal set of hyperparameters from the proposed method was also robust against an increase of noise in the data and can be applicable to different imaging samples with similar context. The ACO approach in the proposed method was able to identify optimal values of hyperparameters for a dataset and, as a result, produced a good quality reconstructed image from limited number of projection data. The proposed method in this work successfully solves a problem of hyperparameters selection, which is a major challenge in an implementation of TV based reconstruction algorithms.


2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Yadong Wu ◽  
Hongying Zhang ◽  
Ran Duan

Visual quality measure is one of the fundamental and important issues to numerous applications of image and video processing. In this paper, based on the assumption that human visual system is sensitive to image structures (edges) and image local luminance (light stimulation), we propose a new perceptual image quality assessment (PIQA) measure based on total variation (TV) model (TVPIQA) in spatial domain. The proposed measure compares TVs between a distorted image and its reference image to represent the loss of image structural information. Because of the good performance of TV model in describing edges, the proposed TVPIQA measure can illustrate image structure information very well. In addition, the energy of enclosed regions in a difference image between the reference image and its distorted image is used to measure the missing luminance information which is sensitive to human visual system. Finally, we validate the performance of TVPIQA measure with Cornell-A57, IVC, TID2008, and CSIQ databases and show that TVPIQA measure outperforms recent state-of-the-art image quality assessment measures.


Author(s):  
Tian Wang ◽  
Chao Hu ◽  
Shuangqing Wu ◽  
Jialin Cui ◽  
Liuyun Zhang ◽  
...  
Keyword(s):  

Author(s):  
Xiaoyu Ma ◽  
Xiuhua Jiang ◽  
Xiaohua Lei ◽  
Hui Zhang ◽  
Ping Liu
Keyword(s):  

2016 ◽  
Vol 174 ◽  
pp. 310-321 ◽  
Author(s):  
Shuigen Wang ◽  
Chenwei Deng ◽  
Baojun Zhao ◽  
Guang-Bin Huang ◽  
Baoxian Wang

Sign in / Sign up

Export Citation Format

Share Document