Is the differential frequency-based attack effective against random delay insertion?

Author(s):  
Y. Lu ◽  
K. H. Boey ◽  
M. O'Neill ◽  
J. V. McCanny ◽  
A. Satoh
Keyword(s):  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Amadou Diop ◽  
Mamadou Abdul Diop ◽  
K. Ezzinbi

Abstract In this paper, we consider a class of random partial integro-differential equations with unbounded delay. Existence of mild solutions are investigated by using a random fixed point theorem with a stochastic domain combined with Schauder’s fixed point theorem and Grimmer’s resolvent operator theory. The results are obtained under Carathéodory conditions. Finally, an example is provided to illustrate our results.


2011 ◽  
Vol 11 (02n03) ◽  
pp. 369-388 ◽  
Author(s):  
M. J. GARRIDO-ATIENZA ◽  
A. OGROWSKY ◽  
B. SCHMALFUSS

We investigate a random differential equation with random delay. First the non-autonomous case is considered. We show the existence and uniqueness of a solution that generates a cocycle. In particular, the existence of an attractor is proved. Secondly we look at the random case. We pay special attention to the measurability. This allows us to prove that the solution to the random differential equation generates a random dynamical system. The existence result of the attractor can be carried over to the random case.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Peyman Sakhaii ◽  
Bojan Bohorc ◽  
Uwe Schliedermann ◽  
Wolfgang Bermel

AbstractOver decades multidimensional NMR spectroscopy has become an indispensable tool for structure elucidation of natural products, peptides and medium sized to large proteins. Heteronuclear single quantum coherence (HSQC) spectroscopy is one of the work horses in that field often used to map structural connectivity between protons and carbons or other hetero nuclei. In overcrowded HSQC spectra, proton multiplet structures of cross peaks set a limit to the power of resolution and make a straightforward assignment difficult. In this work, we provide a solution to improve these penalties by completely removing the proton spin multiplet structure of HSQC cross peaks. Previously reported sideband artefacts are diminished leading to HSQC spectra with singlet responses for all types of proton multiplicities. For sideband suppression, the idea of restricted random delay (RRD) in chunk interrupted data acquisition is introduced and exemplified. The problem of irreducible residual doublet splitting of diastereotopic CH2 groups is simply solved by using a phase sensitive JRES approach in conjunction with echo processing and real time broadband homodecoupling (BBHD) HSQC, applied as a 3D experiment. Advantages and limitations of the method is presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document