Efficient Hardware Architecture for Large Disparity Range Stereo Matching Based on Belief Propagation

Author(s):  
Sih-Sian Wu ◽  
Chen-Han Tsai ◽  
Liang-Gee Chen

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1430
Author(s):  
Xiaogang Jia ◽  
Wei Chen ◽  
Zhengfa Liang ◽  
Xin Luo ◽  
Mingfei Wu ◽  
...  

Stereo matching is an important research field of computer vision. Due to the dimension of cost aggregation, current neural network-based stereo methods are difficult to trade-off speed and accuracy. To this end, we integrate fast 2D stereo methods with accurate 3D networks to improve performance and reduce running time. We leverage a 2D encoder-decoder network to generate a rough disparity map and construct a disparity range to guide the 3D aggregation network, which can significantly improve the accuracy and reduce the computational cost. We use a stacked hourglass structure to refine the disparity from coarse to fine. We evaluated our method on three public datasets. According to the KITTI official website results, Our network can generate an accurate result in 80 ms on a modern GPU. Compared to other 2D stereo networks (AANet, DeepPruner, FADNet, etc.), our network has a big improvement in accuracy. Meanwhile, it is significantly faster than other 3D stereo networks (5× than PSMNet, 7.5× than CSN and 22.5× than GANet, etc.), demonstrating the effectiveness of our method.



Author(s):  
Chengzhi Luo ◽  
Jianjun Lei ◽  
Guanglong Hu ◽  
Kefeng Fan ◽  
Shupo Bu




2020 ◽  
Vol 12 (24) ◽  
pp. 4025
Author(s):  
Rongshu Tao ◽  
Yuming Xiang ◽  
Hongjian You

As an essential step in 3D reconstruction, stereo matching still faces unignorable problems due to the high resolution and complex structures of remote sensing images. Especially in occluded areas of tall buildings and textureless areas of waters and woods, precise disparity estimation has become a difficult but important task. In this paper, we develop a novel edge-sense bidirectional pyramid stereo matching network to solve the aforementioned problems. The cost volume is constructed from negative to positive disparities since the disparity range in remote sensing images varies greatly and traditional deep learning networks only work well for positive disparities. Then, the occlusion-aware maps based on the forward-backward consistency assumption are applied to reduce the influence of the occluded area. Moreover, we design an edge-sense smoothness loss to improve the performance of textureless areas while maintaining the main structure. The proposed network is compared with two baselines. The experimental results show that our proposed method outperforms two methods, DenseMapNet and PSMNet, in terms of averaged endpoint error (EPE) and the fraction of erroneous pixels (D1), and the improvements in occluded and textureless areas are significant.



Author(s):  
Jian Sun ◽  
Nan-Ning Zheng ◽  
Heung-Yeung Shum




2016 ◽  
Vol 46 (2) ◽  
pp. 029606
Author(s):  
FangFang CHEN ◽  
Yan SONG ◽  
YuGang TIAN ◽  
DongBo ZHU


2012 ◽  
Vol 546-547 ◽  
pp. 735-740
Author(s):  
Xing Nian Cui ◽  
Fan Yang ◽  
Qing Min Liao

In this paper, we present a stereo matching algorithm based on planar surface hypothesis. It improves the results of low texture regions and mixed pixels on object boundaries. First, regions are segmented by applying the mean-shift segmentation method. Then we propose a coarse-to-fine algorithm to increase the reliable correspondences in low texture regions. Third, the Belief Propagation algorithm is used to optimize disparity plane labeling. Finally, for a mixed pixel, we utilize the results of the depth plane and the local region of it to regulate its disparity. Experimental results using the Middlebury stereo test show that the performance of our method is high.



Sign in / Sign up

Export Citation Format

Share Document