A practical evaluation for routing performance of BATMAN-ADV and HWMN in a Wireless Mesh Network test-bed

Author(s):  
Moirangthem Sailash Singh ◽  
Viswanath Talasila
2016 ◽  
Vol 2016 ◽  
pp. 1-16
Author(s):  
Pragasen Mudali ◽  
Matthew Olusegun Adigun

Topology Control has been shown to provide several benefits to wireless ad hoc and mesh networks. However these benefits have largely been demonstrated using simulation-based evaluations. In this paper, we demonstrate the negative impact that the PlainTC Topology Control prototype has on topology stability. This instability is found to be caused by the large number of transceiver power adjustments undertaken by the prototype. A context-based solution is offered to reduce the number of transceiver power adjustments undertaken without sacrificing the cumulative transceiver power savings and spatial reuse advantages gained from employing Topology Control in an infrastructure wireless mesh network. We propose the context-based PlainTC+ prototype and show that incorporating context information in the transceiver power adjustment process significantly reduces topology instability. In addition, improvements to network performance arising from the improved topology stability are also observed. Future plans to add real-time context-awareness to PlainTC+ will have the scheme being prototyped in a software-defined wireless mesh network test-bed being planned.


Author(s):  
Tsehay Admassu Assegie ◽  
Tamilarasi Suresh ◽  
R. Subhashni ◽  
Deepika M

<span>Wireless mesh network (WMN) is a new trend in wireless communication promising greater flexibility, reliability, and performance over traditional wireless local area network (WLAN). Test bed analysis and emulation plays an essential role in valuation of software defined wireless network and node mobility is the prominent feature of next generation software defined wireless network. In this study, the mobility models employed for moving mobile stations in software defined wireless network are explored. Moreover, the importance of mobility model within software defined wireless mesh network for enhancing the performance through handover-based load balancing is analyzed. The mobility models for the next generation software defined wireless network are explored. Furthermore, we have presented the mobility models in the mininet-Wi-Fi test bed, and evaluated the performance of Gauss Marko’s mobility model.</span>


Author(s):  
Tsehay Admassu Assegie ◽  
Pramod Sekharan Nair

Wireless mesh networks (WMNs) are a new trend in wireless communication promising greater flexibility, reliability, and performance over traditional wireless local area networks (WLANs).Test bed analysis and emulation plays an important role in evaluation of wireless networks and node mobility is the prominent feature of next generation wireless network. In this paper we will focus on the models of wireless station mobility and discuss their importance within the software defined wireless mesh network performance evaluation. The existing mobility models for the next generation software defined wireless network will be explored. Finlay, we will present the mobility models in the mininet-Wi-Fi test bed, and evaluate the performance of the models


Sign in / Sign up

Export Citation Format

Share Document