Reversible Data Hiding in Encrypted Images Using Prediction-Error Encoding

Author(s):  
Shuang Yi ◽  
Yicong Zhou
2019 ◽  
Vol 13 (10) ◽  
pp. 1705-1713 ◽  
Author(s):  
Mohsin Shah ◽  
Weiming Zhang ◽  
Honggang Hu ◽  
Xiaojuan Dong ◽  
Nenghai Yu

Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 664
Author(s):  
Ya Liu ◽  
Guangdong Feng ◽  
Chuan Qin ◽  
Haining Lu ◽  
Chin-Chen Chang

Nowadays, more and more researchers are interested in reversible data hiding in encrypted images (RDHEI), which can be applied in privacy protection and cloud storage. In this paper, a new RDHEI method on the basis of hierarchical quad-tree coding and multi-MSB (most significant bit) prediction is proposed. The content owner performs pixel prediction to obtain a prediction error image and explores the maximum embedding capacity of the prediction error image by hierarchical quad-tree coding before image encryption. According to the marked bits of vacated room capacity, the data hider can embed additional data into the room-vacated image without knowing the content of original image. Through the data hiding key and the encryption key, the legal receiver is able to conduct data extraction and image recovery separately. Experimental results show that the average embedding rates of the proposed method can separately reach 3.504 bpp (bits per pixel), 3.394 bpp, and 2.746 bpp on three well-known databases, BOSSBase, BOWS-2, and UCID, which are higher than some state-of-the-art methods.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Xi-Yan Li ◽  
Xia-Bing Zhou ◽  
Qing-Lei Zhou ◽  
Shi-Jing Han ◽  
Zheng Liu

With the development of cloud computing, high-capacity reversible data hiding in an encrypted image (RDHEI) has attracted increasing attention. The main idea of RDHEI is that an image owner encrypts a cover image, and then a data hider embeds secret information in the encrypted image. With the information hiding key, a receiver can extract the embedded data from the hidden image; with the encryption key, the receiver reconstructs the original image. In this paper, we can embed data in the form of random bits or scanned documents. The proposed method takes full advantage of the spatial correlation in the original images to vacate the room for embedding information before image encryption. By jointly using Sudoku and Arnold chaos encryption, the encrypted images retain the vacated room. Before the data hiding phase, the secret information is preprocessed by a halftone, quadtree, and S-BOX transformation. The experimental results prove that the proposed method not only realizes high-capacity reversible data hiding in encrypted images but also reconstructs the original image completely.


Sign in / Sign up

Export Citation Format

Share Document