Micro-analytical techniques for imaging erbium doped optical fibers

Author(s):  
F. Sidiroglou ◽  
S.T. Huntington ◽  
R. Stern ◽  
G. Baxter ◽  
A. Roberts
2012 ◽  
Vol 38 (11) ◽  
pp. 1020-1023
Author(s):  
I. O. Zolotovskii ◽  
D. A. Korobko ◽  
O. G. Okhotnikov ◽  
D. I. Sementsov ◽  
A. A. Sysolyatin ◽  
...  
Keyword(s):  

1995 ◽  
Vol 415 ◽  
Author(s):  
Oliver Just ◽  
Anton C. Greenwald ◽  
William S. Rees

ABSTRACTThe homoleptic compound erbium{tris[bis (trimethylsilyl)]amide} displays high doping ability for incorporation of the rare earth element into epitaxially grown semiconducting host materials for fabrication of temperature-independent, monochromatic solid state optoelectronic devices. Electronic characteristics derived from erbium doped semiconducting films have been obtained. Several more volatile and lower melting representatives of this class of compounds have been synthesized, characterized by various analytical techniques and examined for their suitability to incorporate optically-active erbium centers into a semiconducting environment.


Fibers ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 67 ◽  
Author(s):  
Mukul Paul ◽  
Alexander Kir’yanov ◽  
Yuri Barmenkov ◽  
Mrinmay Pal ◽  
Randall Youngman ◽  
...  

In this paper, we present phase-separated alumina–silica glass-based Er3+-doped optical fibers made by a modified chemical vapor deposition (MCVD) process in combination with a solution doping (SD) technique. The fibers exhibited better optical performance than other silica-based host glasses—both in terms of spectral broadening and flattening of the gain spectra in the C band (1530–1560 nm) region—as well as an improved lifetime. These phase-separated erbium-doped fibers (EDF) promoted longer Er–O bond lengths and also hexa- and penta-coordinated Al3+ ions instead of the fourfold coordination found in non-phase-separated EDF. It was observed that the higher coordination numbers of Er3+ and Al3+ ions in phase-separated glass hosts led to more homogeneous and inhomogeneous broadening, resulting in better flatness of the gain spectrum with 1.2 dB more gain compared to the non-phase-separated EDF.


Ceramics ◽  
2018 ◽  
Vol 1 (2) ◽  
pp. 364-374 ◽  
Author(s):  
Manuel Vermillac ◽  
Jean-François Lupi ◽  
Stanislaw Trzesien ◽  
Michele Ude ◽  
Wilfried Blanc

Improving optical fiber amplifiers requires the elaboration and use of new materials and new compositions. In this sense, we prepared erbium-doped optical fiber samples that were co-doped with magnesium or lanthanum by gradual-time solution doping. Doping concentrations and thermal processes induce the formation of nanoparticles. The effect of lanthanum and magnesium contents on the width of the spontaneous emission of the 4 I 13 / 2 level of Er 3 + was characterized in the nanoparticle-rich fiber samples. For that purpose, the width was characterized by the effective linewidth and the full-width at half-maximum (FWHM). The results indicate the robustness of the effective linewidth to strong variations in the intensity profiles of the 4 I 13 / 2 spontaneous emission. Increasing the doping concentrations of both magnesium and lanthanum increases the FWHM and the effective linewidth, along with optical losses. Results show that the fabrication of nanoparticle-rich optical fibers through lanthanum or magnesium doping induces an FHWM broadening of 54% and 64%, respectively, or an effective linewidth broadening of 59% (for both elements) while maintaining a transparency that is compatible with fiber laser and amplifier applications.


2013 ◽  
Vol 102 (19) ◽  
pp. 191906 ◽  
Author(s):  
Mingjie Ding ◽  
Neisei Hayashi ◽  
Yosuke Mizuno ◽  
Kentaro Nakamura

2010 ◽  
Vol 25 (16) ◽  
pp. 1365-1381 ◽  
Author(s):  
YU-SHAN XUE ◽  
BO TIAN ◽  
HAI-QIANG ZHANG ◽  
LI-LI LI

For describing wave propagation in an inhomogeneous erbium-doped nonlinear fiber with higher-order dispersion and self-steepening, an inhomogeneous coupled Hirota–Maxwell–Bloch system is considered with the aid of symbolic computation. Through Painlevé singularity structure analysis, the integrable condition of such a system is analyzed. Via the Painlevé-integrable condition, the Lax pair is explicitly constructed based on the Ablowitz–Kaup–Newell–Segur scheme. Furthermore, the analytic soliton-like solutions are obtained via the Darboux transformation which makes it exercisable to generate the multi-soliton solutions in a recursive manner. Through the graphical analysis of some obtained analytic one- and two-soliton-like solutions, our concerns are mainly on the envelope soliton excitation, the propagation features of optical solitons and their interaction behaviors in actual fiber communication. Finally, the conservation laws for the system are also presented.


Author(s):  
Robert W. Boyd ◽  
George M. Gehring ◽  
Giovanni Piredda ◽  
Aaron Schweinsberg ◽  
Katie Schwertz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document