Situation Awareness and Decision Making for Constituent Systems

Author(s):  
Pontus Svenson ◽  
Jakob Axelsson
Author(s):  
A. V. Smirnov ◽  
T. V. Levashova

Introduction: Socio-cyber-physical systems are complex non-linear systems. Such systems display emergent properties. Involvement of humans, as a part of these systems, in the decision-making process contributes to overcoming the consequences of the emergent system behavior, since people can use their experience and intuition, not just the programmed rules and procedures.Purpose: Development of models for decision support in socio-cyber-physical systems.Results: A scheme of decision making in socio-cyber-physical systems, a conceptual framework of decision support in these systems, and stepwise decision support models have been developed. The decision-making scheme is that cybernetic components make their decisions first, and if they cannot do this, they ask humans for help. The stepwise models support the decisions made by components of socio-cyber-physical systems at the conventional stages of the decision-making process: situation awareness, problem identification, development of alternatives, choice of a preferred alternative, and decision implementation. The application of the developed models is illustrated through a scenario for planning the execution of a common task for robots.Practical relevance: The developed models enable you to design plans on solving tasks common for system components or on achievement of common goals, and to implement these plans. The models contribute to overcoming the consequences of the emergent behavior of socio-cyber-physical systems, and to the research on machine learning and mobile robot control.


2009 ◽  
Author(s):  
Robert J. Pleban ◽  
Jennifer S. Tucker ◽  
Vanessa Johnson Katie /Gunther ◽  
Thomas R. Graves

Author(s):  
Lokukaluge P. Perera

A general framework to support the navigation side of autonomous ships is discussed in this study. That consists of various maritime technologies to achieve the required level of ocean autonomy. Decision-making processes in autonomous vessels will play an important role under such ocean autonomy, therefore the same technologies should consist of adequate system intelligence. Each onboard application in autonomous vessels may require localized decision-making modules, therefore that will introduce a distributed intelligence type strategy. Hence, future ships will be agent-based systems with distributed intelligence throughout vessels. The main core of this agent should consist of deep learning type technology that has presented promising results in other transportation systems, i.e. self-driving cars. Deep learning can capture helmsman behavior, therefore that type system intelligence can be used to navigate autonomous vessels. Furthermore, an additional decision support layer should also be developed to facilitate deep learning type technology including situation awareness and collision avoidance. Ship collision avoidance is regulated by the Convention on the International Regulations for Preventing Collisions at Sea, 1972 (COLREGs) under open sea areas. Hence, a general overview of the COLREGs and its implementation challenges, i.e. regulatory failures and violations, under autonomous ships are also discussed with the possible solutions as the main contribution of this study. Furthermore, additional considerations, i.e. performance standards with the applicable limits of liability, terms, expectations and conditions, towards evaluating ship behavior as an agent-based system on collision avoidance situations are also illustrated in this study.


Author(s):  
Irit Rasooly ◽  
Evan Orenstein ◽  
Robert Grundmeier ◽  
Naveen Muthu

Simulation is an educational approach well suited to development of knowledge and decision-making skills for emergent or infrequent scenarios. Electronic Health Record (EHR) based simulation, in which participants retrieve information from a simulated EHR, provides an authentic training environment with fidelity to the typical clinical decision-making process and has been associated with enduring changes in EHR use patterns. However, we do not know whether these behavior changes reflect better decision-making. We aimed to develop a measure of pediatric resident performance in an EHR based simulation using the Situation Awareness Global Assessment Technique (SAGAT).


2019 ◽  
Vol 273 ◽  
pp. 02003
Author(s):  
Maria Mikela Chatzimichailidou ◽  
Nektarios Karanikas

This paper utilises a methodology named “Risk SituatiOn Awareness Provision” (RiskSOAP). RiskSOAP expresses the capability of a system to meet its safety objectives by controlling its processes and communicating threats and vulnerabilities to increase the situation awareness of its end-users and support their decision-making. In reality safety-related system features might be partially available or unavailable due to design incompleteness or malfunctions. Therefore, respectively, the availability and capability of RiskSOAP mechanisms might fluctuate over time. To examine whether changes in RiskSOAP values correspond to a system degradation, we used the results of a previous study that applied the RiskSOAP methodology to the Überlingen mid-air collision accident. Complementary to the previous application where the RiskSOAP was calculated for four milestones of the specific event, in this study we divided the accident further into seventeen time-points and we calculated the RiskSOAP indicator per time-point. The results confirmed that the degradation of the RiskSOAP capability coincided with the milestones that were closer to the mid-air collision, while the plotting of the RiskSOAP indicator against time showed its nonlinear fluctuation alongside the accident development.


Sign in / Sign up

Export Citation Format

Share Document