scholarly journals On the sum of gamma random variates with application to the performance of maximal ratio combining over Nakagami-m fading channels

Author(s):  
Imran Shafique Ansari ◽  
Ferkan Yilmaz ◽  
Mohamed-Slim Alouini ◽  
Oguz Kucur
Author(s):  
Nguyen Hong Giang ◽  
Vo Nguyen Quoc Bao ◽  
Hung Nguyen-Le

This paper analyzes the performance of a cognitive underlay system over Nakagami-m fading channels, where maximal ratio combining (MRC) is employed at secondary destination and relay nodes. Under the condition of imperfect channel state information (CSI) of interfering channels, system performance metrics for the primary network and for the secondary network are formulated into exact and approximate expressions, which can be served as theoretical guidelines for system designs. To verify the performance analysis, several analytical and simulated results of the system performance are provided under various system and channel settings.


2021 ◽  
Vol 8 (1) ◽  
pp. 33-44
Author(s):  
Toufik Chaayra ◽  
Hussain Ben-azza ◽  
Faissal El Bouanani

Evaluating the sum of independent and not necessarily identically distributed (i.n.i.d) random variables (RVs) is essential to study different variables linked to various scientific fields, particularly, in wireless communication channels. However, it is difficult to evaluate the distribution of this sum when the number of RVs increases. Consequently, the complex contour integral will be difficult to determine. Considering this issue, a more accurate approximation of the distribution function is required. By assuming the probability density function (PDF) of a generalized gamma (GG) RV evaluated in terms of a proper subset H1,0 1,1 class of Fox’s H-function (FHF) and the moment-based approximation to estimate the FHF parameters, a closed-form tight approximate expression for the distribution of the sum of i.n.i.d GG RVs and a sufficient condition for the convergence are investigated. The proposed approximate may be an analytical useful tool for analyzing the performance of certain numbers branch maximal-ratio combining receivers subject to GG fading channels. Hence, various closed-form performance metrics are derived and examined in terms of FHF. Numerical simulations are carried out to illustrate the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document