Laboratory delta robot for mechatronic education purposes

Author(s):  
Jiri Kovar ◽  
Ondrej Andrs ◽  
Lukas Brezina ◽  
Vladislav Singule
Keyword(s):  
Author(s):  
Tingting Su ◽  
Haojian Zhang ◽  
Yunkuan Wang ◽  
Shaohong Wu ◽  
Jun Zheng ◽  
...  
Keyword(s):  

Author(s):  
Jose Daniel Martinez Reyes ◽  
Germanico Gonzalez Badillo ◽  
Victor Esteban Espinoza Lopez ◽  
Guillermina Guerrero Mora
Keyword(s):  

2021 ◽  
Author(s):  
Juan de Dios Flores-Mendez ◽  
Henrik Schioler ◽  
Shaoping Bai ◽  
Ole Madsen

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yuezong Wang ◽  
Jinghui Liu ◽  
Mengfei Guo ◽  
LiuQIan Wang

Purpose A three-dimensional (3D) printing error simulation approach is proposed to analyze the influence of tilted vertical beams on the 3D printing accuracy. The purpose of this study is to analyze the influence of such errors on printing accuracy and printing quality for delta-robot 3D printer. Design/methodology/approach First, the kinematic model of a delta-robot 3D printer with an ideal geometric structure is proposed by using vector analysis. Then, the normal kinematic model of a nonideal delta-robot 3D robot with tilted vertical beams is derived based on the above ideal kinematic model. Finally, a 3D printing error simulation approach is proposed to analyze the influence of tilted vertical beams on the 3D printing accuracy. Findings The results show that tilted vertical beams can indeed cause 3D printing errors and further influence the 3D printing quality of the final products and that the 3D printing errors of tilted vertical beams are related to the rotation angles of the tilted vertical beams. The larger the rotation angles of the tilted vertical beams are, the greater the geometric deformations of the printed structures. Originality/value Three vertical beams and six horizontal beams constitute the supporting parts of the frame of a delta-robot 3D printer. In this paper, the orientations of tilted vertical beams are shown to have a significant influence on 3D printing accuracy. However, the effect of tilted vertical beams on 3D printing accuracy is difficult to capture by instruments. To reveal the 3D printing error mechanisms under the condition of tilted vertical beams, the error generation mechanism and the quantitative influence of tilted vertical beams on 3D printing accuracy are studied by simulating the parallel motion mechanism of a delta-robot 3D printer with tilted vertical beams.


Author(s):  
Supod Kaewkorn ◽  
Chanin Joochim ◽  
Phongsak Keeratiwintakorn ◽  
Alisa Kunapinun
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document