error simulation
Recently Published Documents


TOTAL DOCUMENTS

106
(FIVE YEARS 19)

H-INDEX

10
(FIVE YEARS 1)

Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3093
Author(s):  
Bai Li ◽  
Shiqi Tang ◽  
Youmin Zhang ◽  
Xiang Zhong

Infrared positioning is a critical module in an indoor autonomous vehicle platform. In an infrared positioning system, the ego vehicle is equipped with an infrared emitter while the infrared receivers are fixed onto the ceiling. The infrared positioning result is accurate only when the number of valid infrared receivers is more than three. An infrared receiver easily becomes invalid if it does not receive light from the infrared emitter due to indoor occlusions. This study proposes an occlusion-aware path planner that enables an autonomous vehicle to navigate toward the occlusion-free part of the drivable area. The planner consists of four layers. In layer one, a homotopic A* path is searched for in the 2D grid map to roughly connect the initial and goal points. In layer two, a curvature-continuous reference line is planned close to the A* path using numerical optimal control. In layer three, a Frenet frame is constructed along the reference line, followed by a search for an occlusion-aware path within that frame via dynamic programming. In layer four, a curvature-continuous path is optimized via quadratic programming within the Frenet frame. A path planned within the Frenet frame may violate the curvature bounds in a real-world Cartesian frame; thus, layer four is implemented through trial and error. Simulation results in CarSim software show that the derived paths reduce the poor positioning risk and are easily tracked by a controller.


2021 ◽  
Vol 11 ◽  
Author(s):  
Bin Feng ◽  
Lei Yu ◽  
Enwei Mo ◽  
Liyuan Chen ◽  
Jun Zhao ◽  
...  

PurposeThe difference in anatomical structure and positioning between planning and treatment may lead to bias in electronic portal image device (EPID)-based in vivo dosimetry calculations. The purpose of this study was to use daily CT instead of planning CT as a reference for EPID-based in vivo dosimetry calculations and to analyze the necessity of using daily CT for EPID-based in vivo dosimetry calculations in terms of patient quality assurance.Materials and MethodsTwenty patients were enrolled in this study. The study design included eight different sites (the cervical, nasopharyngeal, and oral cavities, rectum, prostate, bladder, lung, and esophagus). All treatments were delivered with a CT-linac 506c (UIH, Shanghai) using 6 MV photon beams. This machine is equipped with diagnosis-level fan-beam CT and an amorphous silicon EPID XRD1642 (Varex Imaging Corporation, UT, USA). A Monte Carlo algorithm was developed to calculate the transmit EPID image. A pretreatment measurement was performed to assess system accuracy by delivering based on a homogeneous phantom (RW3 slab, PTW, Freiburg). During treatment, each patient underwent CT scanning before delivery either once or twice for a total of 268 fractions obtained daily CT images. Patients may have had a position correction that followed our image-guided radiation therapy (IGRT) procedure. Meanwhile, transmit EPID images were acquired for each field during delivery. After treatment, all patient CTs were reviewed to ensure that there was no large anatomical change between planning and treatment. The reference of transmit EPID images was calculated based on both planning and daily CTs, and the IGRT correction was corrected for the EPID calculation. The gamma passing rate (3 mm 3%, 2 mm 3%, and 2 mm 2%) was calculated and compared between the planning CT and daily CT. Mechanical errors [ ± 1 mm, ± 2 mm, ± 5 mm multileaf collimator (MLC) systematic shift and 3%, 5% monitor unit (MU) scaling] were also introduced in this study for comparing detectability between both types of CT.ResultThe average (standard deviation) gamma passing rate (3 mm 3%, 2 mm 3%, and 2 mm 2%) in the RW3 slab phantom was 99.6% ± 1.0%, 98.9% ± 2.1%, and 97.2% ± 3.9%. For patient measurement, the average (standard deviation) gamma passing rates were 87.8% ± 14.0%, 82.2% ± 16.9%, and 74.2% ± 18.9% for using planning CTs as reference and 93.6% ± 8.2%, 89.7% ± 11.0%, and 82.8% ± 14.7% for using daily CTs as reference. There were significant differences between the planning CT and daily CT results. All p-values (Mann–Whitney test) were less than 0.001. In terms of error simulation, nonparametric test shows that there were significant differences between practical daily results and error simulation results (p < 0.001). The receiver operating characteristic (ROC) analysis indicated that the detectability of mechanical delivery error using daily CT was better than that of planning CT. AUCDaily CT = 0.63–0.96 and AUCPlanning CT = 0.49–0.93 in MLC systematic shift and AUCDaily CT = 0.56–0.82 and AUCPlanning CT = 0.45–0.73 in MU scaling.ConclusionThis study shows the feasibility and effectiveness of using two-dimensional (2D) EPID portal image and daily CT-based in vivo dosimetry for intensity-modulated radiation therapy (IMRT) verification during treatment. The daily CT-based in vivo dosimetry has better sensitivity and specificity to identify the variation of IMRT in MLC-related and dose-related errors than planning CT-based.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yuezong Wang ◽  
Jinghui Liu ◽  
Mengfei Guo ◽  
LiuQIan Wang

Purpose A three-dimensional (3D) printing error simulation approach is proposed to analyze the influence of tilted vertical beams on the 3D printing accuracy. The purpose of this study is to analyze the influence of such errors on printing accuracy and printing quality for delta-robot 3D printer. Design/methodology/approach First, the kinematic model of a delta-robot 3D printer with an ideal geometric structure is proposed by using vector analysis. Then, the normal kinematic model of a nonideal delta-robot 3D robot with tilted vertical beams is derived based on the above ideal kinematic model. Finally, a 3D printing error simulation approach is proposed to analyze the influence of tilted vertical beams on the 3D printing accuracy. Findings The results show that tilted vertical beams can indeed cause 3D printing errors and further influence the 3D printing quality of the final products and that the 3D printing errors of tilted vertical beams are related to the rotation angles of the tilted vertical beams. The larger the rotation angles of the tilted vertical beams are, the greater the geometric deformations of the printed structures. Originality/value Three vertical beams and six horizontal beams constitute the supporting parts of the frame of a delta-robot 3D printer. In this paper, the orientations of tilted vertical beams are shown to have a significant influence on 3D printing accuracy. However, the effect of tilted vertical beams on 3D printing accuracy is difficult to capture by instruments. To reveal the 3D printing error mechanisms under the condition of tilted vertical beams, the error generation mechanism and the quantitative influence of tilted vertical beams on 3D printing accuracy are studied by simulating the parallel motion mechanism of a delta-robot 3D printer with tilted vertical beams.


Author(s):  
Fitri Elvira Ananda

Video transmission is encoded by block-based techniques such as MPEG in sensitive environment. It’s very susceptible to noise which can cause block losses and even missing frames during transmission. A technique to overcome this problem is applied Error concealment (EC) on the decoder. There are two approaches used in this EC, spacial EC which utilizes information around the image and temporal EC by utilizing motion information. The method of EC that used in this research is Frequency Selective Extrapolation (FSE). The video is encoded by the H.264 / AVC standard (MPEG-Part10). The isolated block losses was added to the video as an error simulation, then applied the EC-FSE method on the decoder. There are two method of EC-FSE used, FSE-2D (two dimensions) and FSE-3D (three dimensions). The measurement results were observed by the PSNR and MOS values. The simulation results show that H.264 / AVC video concealed with FSE-3D has a better performance than FSE-2D.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Yongfeng Zhi ◽  
Wenyan Guo

Under the condition that the step size is less than one, a statistical tracking behavior analysis for the affine projection algorithm based on direction error is discussed. When the unknown true weight vector is modeled by the stochastic walk model, the mean weight error is derived under the four assumptions based on the deterministic recursive equation. Furthermore, the statistical tracking behavior of the steady state is analyzed for the affine projection algorithm based on direction error. Simulation analysis is shown to suppniort the mathematical results.


Author(s):  
Jose C. Jara Aguirre ◽  
Andrew P. Norgan ◽  
Walter J. Cook ◽  
Brad S. Karon

Abstract Objectives Error simulation models have been used to understand the relationship between analytical performance and clinical outcomes. We developed an error simulation model to understand the effects of method bias and precision on misclassification rate for neonatal hyperbilirubinemia using an age-adjusted risk assessment tool. Methods For each of 176 measured total bilirubin (TSBM) values, 10,000 simulated total bilirubin (TBS) values were generated at each combination of bias and precision conditions for coefficient of variation (CV) between 1 and 15%, and for biases between −51.3 μmol/L and 51.3 μmol/L (−3 and 3 mg/dL) fixed bias. TBS values were analyzed to determine if they were in the same risk zone as the TSBM value. We then calculated sensitivity and specificity for prediction of ≥75th percentile for postnatal age values as a function of assay bias and precision, and determined the rate of critical errors (≥95th percentile for age TSBM with <75th percentile TBS). Results A sensitivity >95% for predicting ≥75th percentile bilirubin values was observed when there is a positive fixed bias of greater than 17.1 μmol/L (1.0 mg/dL) and CV is maintained ≤10%. A specificity >70% for predicting <75th percentile bilirubin values was observed when positive systematic bias was 17.1 μmol/L (1 mg/dL) or less at CV ≤ 10%. Critical errors did not occur with a frequency >0.2% until negative bias was −17.1 μmol/L (−1 mg/dL) or lower. Conclusions A positive systematic bias of 17.1 μmol/L (1 mg/dL) may be optimal for balancing sensitivity and specificity for predicting ≥75th percentile TSB values. Negative systematic bias should be avoided to allow detection of high risk infants and avoid critical classification errors.


2019 ◽  
Vol 84 (2) ◽  
pp. 7133
Author(s):  
Colleen Marshall ◽  
Jessi Van Der Volgen ◽  
Nancy Lombardo ◽  
Claire Hamasu ◽  
Elizabeth Cardell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document