Fault tolerant permanent magnet synchronous machine for electric power steering systems

Author(s):  
C. Oprea ◽  
C. Martis
ICTE 2015 ◽  
2015 ◽  
Author(s):  
Chen Huang ◽  
Long Chen ◽  
Kaiding Zhang ◽  
Haobin Jiang ◽  
Chaochun Yuan

Author(s):  
Manel Allous ◽  
Kais Mrabet ◽  
Nadia Zanzouri

Electric power steering is an advanced steering system that uses an electric motor to improve steering comfort of the car. As a result, the failures in the electric motor can lead to additional fault modes and cause damage of the electric power steering system performance. Hence, to ensure the stability of this latter, the present paper proposes a new method to reconfigure the fault control. A novelty approach of fast fault estimation based on adaptive observer is also proposed. Moreover, to guarantee optimal and fast control, a fault-tolerant control based on inverse bond graph modeling is designed to construct the behavior of the nominal system. The simulation and the experimental results on a real electric power steering system reveal the importance of the control strategy and show that the proposed approach works as intended.


2020 ◽  
Vol 142 (8) ◽  
Author(s):  
Zhang Rongyun ◽  
Gong Changfu ◽  
Shi Peicheng ◽  
Zhao Linfeng ◽  
Zheng Changsheng ◽  
...  

Abstract A discrete mathematical model of a permanent magnet synchronous motor (PMSM) is established, then the fifth-order cubature Kalman filter (CKF) algorithm is introduced. A Gauss–Newton iterative method is introduced into the iterative process of the fifth-order CKF algorithm to generate the innovation variance and covariance. Therefore, an iterative fifth-order CKF algorithm is proposed as the basis of a PMSM sensorless control is implemented. Then, a PMSM sensorless control based on the iterative fifth-order CKF algorithm is applied to an electric power steering (EPS) system, whose control system is constructed by adopting the typical assist and return control strategy. Finally, to verify the performance of the proposed PMSM sensorless control method, the EPS system model of the PMSM sensorless control is built by using the common phase-locked loop (PLL), the CKF algorithm, the fifth-order CKF algorithm, and the proposed iterative fifth-order CKF algorithm. The simulation analyses and the experimental tests show that the proposed iterative fifth-order CKF algorithm can estimate the PMSM speed with good accuracy and has a strong resistance to disturbances in the load and speed. The assist and return performances of the EPS system are also improved.


Sign in / Sign up

Export Citation Format

Share Document