Optimal reactive power dispatch based on particle swarm optimization approach applied to the Algerian electric power system

Author(s):  
Y. Amrane ◽  
M. Boudour
2019 ◽  
Vol 8 (2) ◽  
pp. 85-103
Author(s):  
Khai P Nguyen ◽  
Trung Minh Dao

The optimal operation of a power system in both normal and contingency cases has a significant role in the power system operation. To guarantee a system to operate securely in both cases, the most severed case should be included in the optimal reactive power dispatch (ORPD) problem. The objective of the SCORPD problem is to solve the ORPD problem in both normal and contingency cases so that the total power loss, stability index, or voltage deviation is the system is minimized satisfying all unit and network constraints. In this article, a hybrid particle swarm optimization and differential evolution (HPSO-DE) is proposed to solve this SCORPD problem. The proposed method is a combination of PSO and DE methods to utilize their advantages so that the search ability of the method can be enhanced. The proposed method has been implemented on the IEEE 30-bus system for different objectives with different scenarios. The obtained results have been indicated that the proposed HPSO-DE method can be very effective for dealing with the complex and large-scale SCORPD problem


Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2333 ◽  
Author(s):  
Tawfiq M. Aljohani ◽  
Ahmed F. Ebrahim ◽  
Osama Mohammed

The optimal reactive power dispatch (ORPD) problem represents a noncontinuous, nonlinear, highly constrained optimization problem that has recently attracted wide research investigation. This paper presents a new hybridization technique for solving the ORPD problem based on the integration of particle swarm optimization (PSO) with artificial physics optimization (APO). This hybridized algorithm is tested and verified on the IEEE 30, IEEE 57, and IEEE 118 bus test systems to solve both single and multiobjective ORPD problems, considering three main aspects. These aspects include active power loss minimization, voltage deviation minimization, and voltage stability improvement. The results prove that the algorithm is effective and displays great consistency and robustness in solving both the single and multiobjective functions while improving the convergence performance of the PSO. It also shows superiority when compared with results obtained from previously reported literature for solving the ORPD problem.


Sign in / Sign up

Export Citation Format

Share Document