Hardware Implementation of P Systems Using Microcontrollers. An Operating Environment for Implementing a Partially Parallel Distributed Architecture

Author(s):  
Sandra Maria Gomez Canaval ◽  
Abraham Gutierrez Rodriguez ◽  
Santiago Alonso Villaverde

Author(s):  
Gheorghe Păun ◽  
Mario J. Pérez-Jiménez

Although P systems are distributed parallel computing devices, no explicit way of handling the input in a distributed way in this framework was considered so far. This note proposes a distributed architecture (based on cell-like P systems, with their skin membranes communicating through channels as in tissue-like P systems, according to specified rules of the antiport type), where parts of a problem can be introduced as inputs in various components and then processed in parallel. The respective devices are called dP systems, with the case of accepting strings called dP automata. The communication complexity can be evaluated in various ways: statically (counting the communication rules in a dP system which solves a given problem), or dynamically (counting the number of communication steps, of communication rules used in a computation, or the number of objects communicated). For each measure, two notions of “parallelizability" can be introduced. Besides (informal) definitions, some illustrations of these idea are provided for dP automata: each regular language is “weakly parallelizable" (i.e., it can be recognized in this framework, using a constant number of communication steps), and there are languages of various types with respect to Chomsky hierarchy which are “efficiently parallelizable" (they are parallelizable and, moreover, are accepted in a faster way by a dP automaton than by a single P automaton). Several suggestions for further research are made.



2009 ◽  
Author(s):  
Mark Yager ◽  
Beret Strong ◽  
Linda Roan ◽  
David Matsumoto ◽  
Kimberly A. Metcalf


2012 ◽  
Vol 1 (6) ◽  
pp. 46-48
Author(s):  
Bethuna Bethuna ◽  


2015 ◽  
Vol 135 (11) ◽  
pp. 1299-1306
Author(s):  
Genki Moriguchi ◽  
Takashi Kambe ◽  
Gen Fujita ◽  
Hajime Sawano


1991 ◽  
Vol 19 (3) ◽  
pp. 122-141 ◽  
Author(s):  
C. Wright ◽  
G. L. Pritchett ◽  
R. J. Kuster ◽  
J. D. Avouris

Abstract A method for determining the effect of suspension dynamics on tire wear has been developed. Typical city cycle maneuvers are defined by instrumented vehicle testing and data in the form of forward velocities and steer angles are used as an input to an ADAMS computer model of the vehicle. A simulation of the maneuvers generates a tire's operating environment in the form of normal load, slip, and camber variations, which contain all the subtle effects of the vehicle's suspension, steering, and handling characteristics. A cyclic repetition of the tire's operating environment is constructed and used to control an MTS Flat-Trac machine. In this way, accelerated tire wear can be generated in the laboratory which is directly related to the design features of the vehicle's suspension and steering systems.



2017 ◽  
Author(s):  
Huafeng Chen ◽  


2019 ◽  
Author(s):  
Terri Lovell ◽  
Curtis Colwell ◽  
Lev N. Zakharov ◽  
Ramesh Jasti

<p>[<i>n</i>]Cycloparaphenylenes, or “carbon nanohoops,” are unique conjugated macrocycles with radially oriented p-systems similar to those in carbon nanotubes. The centrosymmetric nature and conformational rigidity of these molecules lead to unusual size-dependent photophysical characteristics. To investigate these effects further and expand the family of possible structures, a new class of related carbon nanohoops with broken symmetry is disclosed. In these structures, referred to as <i>meta</i>[<i>n</i>]cycloparaphenylenes, a single carbon-carbon bond is shifted by one position in order to break the centrosymmetric nature of the parent [<i>n</i>]cycloparaphenylenes. Advantageously, the symmetry breaking leads to bright emission in the smaller nanohoops, which are typically non-fluorescent due to optical selection rules. Moreover, this simple structural manipulation retains one of the most unique features of the nanohoop structures-size dependent emissive properties with relatively large extinction coefficents and quantum yields. Inspired by earlier theoretical work by Tretiak and co-workers, this joint synthetic, photophysical, and theoretical study provides further design principles to manipulate the optical properties of this growing class of molecules with radially oriented p-systems.</p>



2019 ◽  
Author(s):  
Terri Lovell ◽  
Curtis Colwell ◽  
Lev N. Zakharov ◽  
Ramesh Jasti

<p>[<i>n</i>]Cycloparaphenylenes, or “carbon nanohoops,” are unique conjugated macrocycles with radially oriented p-systems similar to those in carbon nanotubes. The centrosymmetric nature and conformational rigidity of these molecules lead to unusual size-dependent photophysical characteristics. To investigate these effects further and expand the family of possible structures, a new class of related carbon nanohoops with broken symmetry is disclosed. In these structures, referred to as <i>meta</i>[<i>n</i>]cycloparaphenylenes, a single carbon-carbon bond is shifted by one position in order to break the centrosymmetric nature of the parent [<i>n</i>]cycloparaphenylenes. Advantageously, the symmetry breaking leads to bright emission in the smaller nanohoops, which are typically non-fluorescent due to optical selection rules. Moreover, this simple structural manipulation retains one of the most unique features of the nanohoop structures-size dependent emissive properties with relatively large extinction coefficents and quantum yields. Inspired by earlier theoretical work by Tretiak and co-workers, this joint synthetic, photophysical, and theoretical study provides further design principles to manipulate the optical properties of this growing class of molecules with radially oriented p-systems.</p>



2015 ◽  
Vol 1 (3) ◽  
pp. 4 ◽  
Author(s):  
Prof.Vipul Patel ◽  
Prof. Sanjay Patel ◽  
Nikunj Patel ◽  
Prof.Sanjay Prajapati


Sign in / Sign up

Export Citation Format

Share Document