Development of a pumping system decision support tool based on artificial intelligence

Author(s):  
P.W. Ilott ◽  
A.J. Griffiths
2020 ◽  
Vol 19 ◽  

This work tackles a combination of two technological fields: "integrated ultrasonic biosensors" and "connected modules" coupled with “Artificial Intelligence” algorithms to provide healthcare professionals with additional indices offering multidimensional information and a “Decision Support” tool. This device comprises a connected telemedical platform (PC or Smartphone) dedicated to the objective and remote assessment of pathophysiological states resulting from dysphonia of laryngeal origin or respiratory failure of inflammatory origin.


Author(s):  
Zainal Abidin Arsat

Harumanis mango ripeness guide is hardly to reach to predict the ripening stages in a such this emerging artificial intelligence commencing technology. The use of digital support tool for selective fruits in predicting the ripening stages should be subdued, exercising to be accessible by directive users. Having those lacks, this preliminary project is a first step to analyse the ripeness stages of harumanis mango referring to firmness, pulp colours and total soluble sugar (TSS) for digitalization purposes. Twenty-five harumanis mangoes harvested at week tenth were used, which had an average of mass for 417.96 ± 163.24 g. Five samples randomly selected in each stage by settling them under a room temperature and two days interval period. Findings showed the lowest TSS content uncovered at stage 2 for 6.94 Brix and the highest found at stage 5 for 15.02 Brix. The highest firmness unfolded in stage 2 with value of 2.902 kgf and the lowest discovered in stage 5 for 0.810 kgf. The pulp colours showed reduction of blue values for 70, activated at stage 3. The results suggested that harumanis mango started deteriorating after six days of room temperature storing period, this followed by rapid degradation of firmness and increasing of TSS value. Moreover, combinations colour values of red, green and blue composed constructive predictive yellowish variants throughout stages, positively useable to development of digital decision support tool.


2018 ◽  
pp. 1-13 ◽  
Author(s):  
Michael G. Zomnir ◽  
Lev Lipkin ◽  
Maciej Pacula ◽  
Enrique Dominguez Meneses ◽  
Allison MacLeay ◽  
...  

Purpose Next-generation sequencing technologies are actively applied in clinical oncology. Bioinformatics pipeline analysis is an integral part of this process; however, humans cannot yet realize the full potential of the highly complex pipeline output. As a result, the decision to include a variant in the final report during routine clinical sign-out remains challenging. Methods We used an artificial intelligence approach to capture the collective clinical sign-out experience of six board-certified molecular pathologists to build and validate a decision support tool for variant reporting. We extracted all reviewed and reported variants from our clinical database and tested several machine learning models. We used 10-fold cross-validation for our variant call prediction model, which derives a contiguous prediction score from 0 to 1 (no to yes) for clinical reporting. Results For each of the 19,594 initial training variants, our pipeline generates approximately 500 features, which results in a matrix of > 9 million data points. From a comparison of naive Bayes, decision trees, random forests, and logistic regression models, we selected models that allow human interpretability of the prediction score. The logistic regression model demonstrated 1% false negativity and 2% false positivity. The final models’ Youden indices were 0.87 and 0.77 for screening and confirmatory cutoffs, respectively. Retraining on a new assay and performance assessment in 16,123 independent variants validated our approach (Youden index, 0.93). We also derived individual pathologist-centric models (virtual consensus conference function), and a visual drill-down functionality allows assessment of how underlying features contributed to a particular score or decision branch for clinical implementation. Conclusion Our decision support tool for variant reporting is a practically relevant artificial intelligence approach to harness the next-generation sequencing bioinformatics pipeline output when the complexity of data interpretation exceeds human capabilities.


Sign in / Sign up

Export Citation Format

Share Document