Hysteresis Losses and Effective Jc(B)Scaling Law for ITER Nb3Sn Strands

2016 ◽  
Vol 26 (2) ◽  
pp. 1-7 ◽  
Author(s):  
E. Seiler ◽  
D. Richter ◽  
B. Bordini ◽  
L. Bottura ◽  
D. Bessette ◽  
...  
2020 ◽  
pp. 54-58
Author(s):  
S. M. Plotnikov

The division of the total core losses in the electrical steel of the magnetic circuit into two components – losses dueto hysteresis and eddy currents – is a serious technical problem, the solution of which will effectively design and construct electrical machines with magnetic circuits having low magnetic losses. In this regard, an important parameter is the exponent α, with which the frequency of magnetization reversal is included in the total losses in steel. Theoretically, this indicator can take values from 1 to 2. Most authors take α equal to 1.3, which corresponds to the special case when the eddy current losses are three times higher than the hysteresis losses. In fact, for modern electrical steels, the opposite is true. To refine the index α, an attempt was made to separate the total core losses on the basis that the hysteresis component is proportional to the first degree of the magnetization reversal frequency, and the eddy current component is proportional to the second degree. In the article, the calculation formulas of these components are obtained, containing the values of the total losses measured in idling experiments at two different frequencies, and the ratio of these frequencies. It is shown that the rational frequency ratio is within 1.2. Presented the graphs and expressions to determine the exponent α depending on the measured no-load losses and the frequency of magnetization reversal.


2017 ◽  
Vol 137 (4) ◽  
pp. 326-333
Author(s):  
Chiaki Nagai ◽  
Kenji Inukai ◽  
Masato Kobayashi ◽  
Tatsuya Tanaka ◽  
Kensho Abumi ◽  
...  

Glottotheory ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 113-129
Author(s):  
Victor Davis

Abstract Heap’s Law https://dl.acm.org/citation.cfm?id=539986 Heaps, H S 1978 Information Retrieval: Computational and Theoretical Aspects (Academic Press). states that in a large enough text corpus, the number of types as a function of tokens grows as N = K{M^\beta } for some free parameters K, \beta . Much has been written http://iopscience.iop.org/article/10.1088/1367-2630/15/9/093033 Font-Clos, Francesc 2013 A scaling law beyond Zipf’s law and its relation to Heaps’ law (New Journal of Physics 15 093033)., http://iopscience.iop.org/article/10.1088/1367-2630/11/12/123015 Bernhardsson S, da Rocha L E C and Minnhagen P 2009 The meta book and size-dependent properties of written language (New Journal of Physics 11 123015)., http://iopscience.iop.org/article/10.1088/1742-5468/2011/07/P07013 Bernhardsson S, Ki Baek and Minnhagen 2011 A paradoxical property of the monkey book (Journal of Statistical Mechanics: Theory and Experiment, Volume 2011)., http://milicka.cz/kestazeni/type-token_relation.pdf Milička, Jiří 2009 Type-token & Hapax-token Relation: A Combinatorial Model (Glottotheory. International Journal of Theoretical Linguistics 2 (1), 99–110)., https://www.nature.com/articles/srep00943 Petersen, Alexander 2012 Languages cool as they expand: Allometric scaling and the decreasing need for new words (Scientific Reports volume 2, Article number: 943). about how this result and various generalizations can be derived from Zipf’s Law. http://dx.doi.org/10.1037/h0052442 Zipf, George 1949 Human behavior and the principle of least effort (Reading: Addison-Wesley). Here we derive from first principles a completely novel expression of the type-token curve and prove its superior accuracy on real text. This expression naturally generalizes to equally accurate estimates for counting hapaxes and higher n-legomena.


Author(s):  
E Mı́nguez ◽  
R Ruiz ◽  
P Martel ◽  
J.M Gil ◽  
J.G Rubiano ◽  
...  
Keyword(s):  

Author(s):  
Tianyong Yang ◽  
Bofu Wang ◽  
Jianzhao Wu ◽  
Zhiming Lu ◽  
Quan Zhou

AbstractThe horizontal convection in a square enclosure driven by a linear temperature profile along the bottom boundary is investigated numerically by using a finite difference method. The Prandtl number is fixed at 4.38, and the Rayleigh number Ra ranges from 107 to 1011. The convective flow is steady at a relatively low Rayleigh number, and no thermal plume is observed, whereas it transits to be unsteady when the Rayleigh number increases beyond the critical value. The scaling law for the Nusselt number Nu changes from Rossby’s scaling Nu ∼ Ra1/5 in a steady regime to Nu ∼ Ra1/4 in an unsteady regime, which agrees well with the theoretically predicted results. Accordingly, the Reynolds number Re scaling varies from Re ∼ Ra3/11 to Re ∼ Ra2/5. The investigation on the mean flows shows that the thermal and kinetic boundary layer thickness and the mean temperature in the bulk zone decrease with the increasing Ra. The intensity of fluctuating velocity increases with the increasing Ra.


Sign in / Sign up

Export Citation Format

Share Document