Determination of eddy current losses and hysteresis losses in magnetic circuits of electrical machines

2020 ◽  
pp. 54-58
Author(s):  
S. M. Plotnikov

The division of the total core losses in the electrical steel of the magnetic circuit into two components – losses dueto hysteresis and eddy currents – is a serious technical problem, the solution of which will effectively design and construct electrical machines with magnetic circuits having low magnetic losses. In this regard, an important parameter is the exponent α, with which the frequency of magnetization reversal is included in the total losses in steel. Theoretically, this indicator can take values from 1 to 2. Most authors take α equal to 1.3, which corresponds to the special case when the eddy current losses are three times higher than the hysteresis losses. In fact, for modern electrical steels, the opposite is true. To refine the index α, an attempt was made to separate the total core losses on the basis that the hysteresis component is proportional to the first degree of the magnetization reversal frequency, and the eddy current component is proportional to the second degree. In the article, the calculation formulas of these components are obtained, containing the values of the total losses measured in idling experiments at two different frequencies, and the ratio of these frequencies. It is shown that the rational frequency ratio is within 1.2. Presented the graphs and expressions to determine the exponent α depending on the measured no-load losses and the frequency of magnetization reversal.

2019 ◽  
Vol 24 (3) ◽  
pp. 67 ◽  
Author(s):  
Daoud Ouamara ◽  
Frédéric Dubas

Eddy-current analysis is an important research field. This phenomenon occurs in multiple areas and has several applications: electromagnetic braking, repulsive effects, levitation, etc. Thereby, this paper is limited to eddy-current study in rotating electrical machines. In the design process, if the permanent-magnet (PM) loss calculation is very important, the overheating due to eddy-currents must be taken into account. The content of this paper includes sources, calculation methods, reduction techniques, and thermal analysis of PM eddy-current losses. This review aims to act as a guide for the reader to learn about the different aspects and points to consider in studying the eddy-current.


2020 ◽  
Vol 10 (18) ◽  
pp. 6515 ◽  
Author(s):  
Hans Tiismus ◽  
Ants Kallaste ◽  
Anouar Belahcen ◽  
Toomas Vaimann ◽  
Anton Rassõlkin ◽  
...  

Samples from FeSi4 powder were fabricated with a low power selective laser melting (SLM) system using a laser re-melting strategy. The sample material was characterized through magnetic measurements. The study showed excellent DC magnetic properties, comparable to commercial and other 3D printed soft ferromagnetic materials from the literature at low (1 T) magnetization. Empirical total core losses were segregated into hysteresis, eddy and excessive losses via the subtraction of finite element method (FEM) simulated eddy current losses and hysteresis losses measured at quasi-static conditions. Hysteresis losses were found to decrease from 3.65 to 0.95 W/kg (1 T, 50 Hz) after the annealing. Both empirical and FEM results confirm considerable eddy currents generated in the printed bulk toroidal sample, which increase dramatically at high material saturation after annealing. These losses could potentially be reduced by using partitioned material internal structure realized by printed airgaps. Similarly, with regard to the samples characterized in this study, the substantially increased core losses induced by material oversaturation due to reduced filling factor may present a challenge in realizing 3D printed electrical machines with comparable performance to established 2D laminated designs.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4400
Author(s):  
Luca Ferraris ◽  
Fausto Franchini ◽  
Emir Pošković ◽  
Marco Actis Grande ◽  
Róbert Bidulský

In recent years, innovative magnetic materials have been introduced in the field of electrical machines. In the ambit of soft magnetic materials, laminated steels guarantee good robustness and high magnetic performance but, in some high-frequency applications, can be replaced by Soft Magnetic Composite (SMC) materials. SMC materials allow us to reduce the eddy currents and to design innovative 3D magnetic circuits. In general, SMCs are characterized at room temperature, but as electrical machines operate at high temperature (around 100 °C), an investigation analysis of the temperature effect has been carried out on these materials; in particular, three SMC samples with different binder percentages and process parameters have been considered for magnetic and energetic characterization.


Author(s):  
Belli Zoubida ◽  
Mohamed Rachid Mekideche

Purpose – Reducing eddy current losses in magnets of electrical machines can be obtained by means of several techniques. The magnet segmentation is the most popular one. It imposes the least restrictions on machine performances. This paper investigates the effectiveness of the magnet circumferential segmentation technique to reduce these undesirable losses. The full and partial magnet segmentation are both studied for a frequency range from few Hz to a dozen of kHz. To increase the efficiency of these techniques to reduce losses for any working frequency, an optimization strategy based on coupling of finite elements analysis and genetic algorithm is applied. The purpose of this paper is to define the parameters of the total and partial segmentation that can ensure the best reduction of eddy current losses. Design/methodology/approach – First, a model to analyze eddy current losses is presented. Second, the effectiveness of full and partial magnet circumferential segmentation to reduce eddy loss is studied for a range of frequencies from few Hz to a dozen of kHz. To achieve these purposes a 2-D finite element model is developed under MATLAB environment. In a third step of the work, an optimization process is applied to adjust the segmentation design parameters for best reduction of eddy current losses in case of surface mounted permanent magnets synchronous machine. Findings – In case of the skin effect operating, both full and partial magnet segmentations can lead to eddy current losses increases. Such deviations of magnet segmentation techniques can be avoided by an appropriate choice of their design parameters. Originality/value – Few works are dedicated to investigate partial magnet segmentation for eddy current losses reduction. This paper studied the effectiveness and behaviour of partial segmentation for different frequency ranges. To avoid eventual anomalies related to the skin effect an optimization process based on the association of the finite elements analysis to genetic algorithm method is adopted.


Mathematics ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 1096 ◽  
Author(s):  
Mohamed Nabil Fathy Ibrahim ◽  
Peter Sergeant

The direct coil cooling method is one of the existing cooling techniques for electric machines with concentrated windings, in which cooling tubes of conductive material are inserted between the windings. In such cases, eddy current losses are induced in those cooling tubes because of the time variant magnetic field. To compute the cooling tubes losses, either a transient finite element simulation (mostly based on commercial software), or a full analytical method, which is more complex to be constructed, is required. Instead, this paper proposes a simple and an accurate combined semi-analytical-finite element method to calculate the losses of electric machines having cooling tubes. The 2D magnetostatic solution of the magnetic field is obtained e.g., using the free package “FEMM”. Then, the eddy current losses in the tubes are computed using simple analytical equations. In addition, the iron core losses could be obtained. In order to validate the proposed method, two cases are investigated. In Case 1, a six-toothed stator of a switched reluctance machine (SRM), without rotor, is employed in which six cooling tubes are used while in Case 2 a complete rotating SRM is studied. The proposed method is validated by a 2D transient simulation in the commercial software “ANSYS Maxwell” and also by experimental measurements. Evidently, the proposed method is simple and fast to be constructed and it is almost free of cost.


2010 ◽  
Vol 670 ◽  
pp. 477-486 ◽  
Author(s):  
I. Hernández ◽  
J.M. Cañedo ◽  
J.C. Olivares-Galván ◽  
Pavlos S. Georgilakis

This paper presents comparative results of an electromagnetic study performed in two different wound core transformer configurations in order to know the best configuration that reduce excitation current and core losses. The results show that octagonal wound-core (OWC) reduces the excitation current and eddy-current losses with respect conventional-wound core (CWC). The results were obtained applying 2D and 3D FEM simulations, taking into account the non-linear properties of the core. In the last part of this paper, several grades of grain oriented electrical steels and the combination of them are analyzed to find the best mixing percentage to reduce eddy-current losses and excitation current.


2018 ◽  
Vol 54 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Shaoshen Xue ◽  
Jianghua Feng ◽  
Shuying Guo ◽  
Jun Peng ◽  
W. Q. Chu ◽  
...  

Author(s):  
F. W. Carter

The paper deals with the eddy currents in thin circular cylinders of uniform conducting material, due to periodic currents in conductors lying parallel to the axis of the cylinder, or to the rotation of the cylinder in a two-dimensional field of force. The first of these problems was discussed by Mr M. B. Field in a paper entitled “Eddy current losses in three-phase cable sheaths,” read before the British Association at their Cambridge meeting in 1904. The solution proposed, however, although probably sufficient for the object, is mathematically defective, in that the field due to the current carried by the cable is assumed as the total field, the effect of the eddy-current field on the eddy currents themselves being left out of account.


Sign in / Sign up

Export Citation Format

Share Document