Stability Improvement of DC Power System According to Applied DC Circuit Breaker Combined With Fault Current Limitation Characteristics of Superconductivity

2018 ◽  
Vol 28 (7) ◽  
pp. 1-4 ◽  
Author(s):  
Hye-Won Choi ◽  
In-Sung Jeong ◽  
Hyo-Sang Choi
Author(s):  
S. M. Sanzad Lumen ◽  
Ramani Kannan ◽  
Nor Zaihar Yahaya

Due to the stunning advancement of power electronics, DC power system is getting immense attention in the field of research. Protection and hereafter the protective devices for the DC power system application are two vital areas that need to be explored and developed further. Designing a protective device such as DC circuit breaker possesses a lot of challenges. The main challenge is to interrupt a current which does not have a natural zero crossing like AC current has. In addition, energy is stored in the network inductances during normal operation. Instantaneous current breaking is opposed by this stored energy during circuit breaker tripping, hence, all the DC circuit breaker topologies proposed in literature use snubber network, nonlinear resistor to dissipate this stored energy as heat during the current breaking operation. However, it is possible to store this energy momentarily and reuse it later by developing an improvised topology. In this paper, the prospects of energy recovery and reuse in a DC circuit breaker was studied and a new topology with regenerative current breaking capability had been proposed. This new topology can feed the stored energy of the network back into the same network after breaking the current and thus can improve the overall system efficiency.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3897
Author(s):  
Sangyong Park ◽  
Hyosang Choi

The multi-terminal direct current network is expected to commercialize while carrying out projects related to DC power systems worldwide. Accordingly, it is necessary to develop a DC circuit breaker required for the DC power system. A DC circuit breaker should be developed to protect the DC power system and the consumer from the transient state on the line in any case. Currently, the use of power semiconductors increases the performance of DC circuit breakers. However, power semiconductors are expensive and suffer series of losses from frequent failures. Therefore, the DC circuit breaker must have a reliable, stable, and inexpensive structure. We proposed a new type of arc-induction type DC circuit breaker. It consists of a mechanical blocking contact, an induction needle and a superconducting magnet. It blows the arc with an induction needle using the Lorentz force according to the high magnetic field of the superconducting magnet. The arc-induction needle absorbs the arc and flows through the ground wire to the ground to extinguish the arc. We established this principle of arc induction as a mathematical model. In addition, the Maxwell program was used to secure data of electric and magnetic fields and apply them to mathematical models. The results obtained through numerical analysis were analyzed and compared. As a result, we confirmed that the magnitude of the force exerted on the electrons between the mechanical contacts with the superconducting magnets increased about 1.41 times and reasoned the arc-induction phenomenon out numerically.


2012 ◽  
Vol E95.B (6) ◽  
pp. 1990-1996
Author(s):  
Seiya ABE ◽  
Sihun YANG ◽  
Masahito SHOYAMA ◽  
Tamotsu NINOMIYA ◽  
Akira MATSUMOTO ◽  
...  

Author(s):  
Shimin Xue ◽  
Baibing Liu ◽  
Shouxiang Wang ◽  
Xiao Chen ◽  
Xiaoshuai Zhu ◽  
...  

2014 ◽  
Vol 556-562 ◽  
pp. 1959-1963
Author(s):  
Si Ming Wei ◽  
Yi Gong Zhang ◽  
Huan Liu ◽  
Zhi Qiang Dai ◽  
Xiao Du

It is great significance for development of MTDC (Multi-terminal HVDC) to build DC transmission and distribution grids. However, the relatively low impedance in DC grids makes the fault penetration much faster and deeper .Consequently, fast and reliable DC circuit breaker is needed to isolate faults. Breaking time and other parameters are important for a breaker to achieve its goals. This paper presents a DC circuit breaker with a current-limiting inductance and gets the rising and falling characteristics of fault current. Based on the characteristics, a design method of breaking time sequence will be given, as well as the calculation of current-limiting inductance and the selection principles of arresters. A 10kV DC distribution grid is modeled and simulated by PSCAD/EMTDC to verify that the method can meet the requirements of breaking fault current quickly and reliably.


Sign in / Sign up

Export Citation Format

Share Document