scholarly journals Operation Characteristics for the Superconducting Arc-Induction Type DC Circuit Breaker

Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3897
Author(s):  
Sangyong Park ◽  
Hyosang Choi

The multi-terminal direct current network is expected to commercialize while carrying out projects related to DC power systems worldwide. Accordingly, it is necessary to develop a DC circuit breaker required for the DC power system. A DC circuit breaker should be developed to protect the DC power system and the consumer from the transient state on the line in any case. Currently, the use of power semiconductors increases the performance of DC circuit breakers. However, power semiconductors are expensive and suffer series of losses from frequent failures. Therefore, the DC circuit breaker must have a reliable, stable, and inexpensive structure. We proposed a new type of arc-induction type DC circuit breaker. It consists of a mechanical blocking contact, an induction needle and a superconducting magnet. It blows the arc with an induction needle using the Lorentz force according to the high magnetic field of the superconducting magnet. The arc-induction needle absorbs the arc and flows through the ground wire to the ground to extinguish the arc. We established this principle of arc induction as a mathematical model. In addition, the Maxwell program was used to secure data of electric and magnetic fields and apply them to mathematical models. The results obtained through numerical analysis were analyzed and compared. As a result, we confirmed that the magnitude of the force exerted on the electrons between the mechanical contacts with the superconducting magnets increased about 1.41 times and reasoned the arc-induction phenomenon out numerically.

Author(s):  
S. M. Sanzad Lumen ◽  
Ramani Kannan ◽  
Nor Zaihar Yahaya

Due to the stunning advancement of power electronics, DC power system is getting immense attention in the field of research. Protection and hereafter the protective devices for the DC power system application are two vital areas that need to be explored and developed further. Designing a protective device such as DC circuit breaker possesses a lot of challenges. The main challenge is to interrupt a current which does not have a natural zero crossing like AC current has. In addition, energy is stored in the network inductances during normal operation. Instantaneous current breaking is opposed by this stored energy during circuit breaker tripping, hence, all the DC circuit breaker topologies proposed in literature use snubber network, nonlinear resistor to dissipate this stored energy as heat during the current breaking operation. However, it is possible to store this energy momentarily and reuse it later by developing an improvised topology. In this paper, the prospects of energy recovery and reuse in a DC circuit breaker was studied and a new topology with regenerative current breaking capability had been proposed. This new topology can feed the stored energy of the network back into the same network after breaking the current and thus can improve the overall system efficiency.


2012 ◽  
Vol E95.B (6) ◽  
pp. 1990-1996
Author(s):  
Seiya ABE ◽  
Sihun YANG ◽  
Masahito SHOYAMA ◽  
Tamotsu NINOMIYA ◽  
Akira MATSUMOTO ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6632
Author(s):  
Antonio Pepiciello ◽  
Alfredo Vaccaro ◽  
Loi Lei Lai

Prevention and mitigation of low probability, high impact events is becoming a priority for power system operators, as natural disasters are hitting critical infrastructures with increased frequency all over the world. Protecting power networks against these events means improving their resilience in planning, operation and restoration phases. This paper introduces a framework based on time-varying interval Markov Chains to assess system’s resilience to catastrophic events. After recognizing the difficulties in accurately defining transition probabilities, due to the presence of data uncertainty, this paper proposes a novel approach based on interval mathematics, which allows representing the elements of the transition matrices by intervals, and computing reliable enclosures of the transient state probabilities. The proposed framework is validated on a case study, which is based on the resilience analysis of a power system in the presence of multiple contemporary faults. The results show how the proposed framework can successfully enclose all the possible outcomes obtained through Monte Carlo simulation. The main advantages are the low computational burden and high scalability achieved.


Author(s):  
Yanjun Feng ◽  
Yuanfeng Zhou ◽  
Z. John Shen ◽  
Xin Zhou ◽  
Slobodan Krstic

Sign in / Sign up

Export Citation Format

Share Document